These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24476293)

  • 1. Predicting how nanoconfinement changes the relaxation time of a supercooled liquid.
    Ingebrigtsen TS; Errington JR; Truskett TM; Dyre JC
    Phys Rev Lett; 2013 Dec; 111(23):235901. PubMed ID: 24476293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of supercooled water in confined geometry.
    Bergman R; Swenson J
    Nature; 2000 Jan; 403(6767):283-6. PubMed ID: 10659841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isomorphs in model molecular liquids.
    Ingebrigtsen TS; Schrøder TB; Dyre JC
    J Phys Chem B; 2012 Jan; 116(3):1018-34. PubMed ID: 22251282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excess-entropy scaling of dynamics for a confined fluid of dumbbell-shaped particles.
    Chopra R; Truskett TM; Errington JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041201. PubMed ID: 21230265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact range for smooth wall-liquid interactions in nanoconfined liquids.
    Ingebrigtsen TS; Dyre JC
    Soft Matter; 2014 Jun; 10(24):4324-31. PubMed ID: 24791276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between self-diffusivity, packing fraction, and excess entropy in simple bulk and confined fluids.
    Mittal J; Errington JR; Truskett TM
    J Phys Chem B; 2007 Aug; 111(34):10054-63. PubMed ID: 17629320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic and Kinetic Transitions of Liquids in Nanoconfinement.
    Sen S; Risbud SH; Bartl MH
    Acc Chem Res; 2020 Dec; 53(12):2869-2878. PubMed ID: 33186005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of nanoconfined supercooled liquids.
    Richert R
    Annu Rev Phys Chem; 2011; 62():65-84. PubMed ID: 21090966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isomorphs in nanoconfined liquids.
    Carter BMGD; Royall CP; Dyre JC; Ingebrigtsen TS
    Soft Matter; 2021 Oct; 17(38):8662-8677. PubMed ID: 34515711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of deeply supercooled interfacial water.
    Swenson J; Cerveny S
    J Phys Condens Matter; 2015 Jan; 27(3):033102. PubMed ID: 25437331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure-energy correlations in liquids. IV. "Isomorphs" in liquid phase diagrams.
    Gnan N; Schrøder TB; Pedersen UR; Bailey NP; Dyre JC
    J Chem Phys; 2009 Dec; 131(23):234504. PubMed ID: 20025332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics of glycerol and glycerol-trehalose bioprotectant solutions nanoconfined in porous silicon.
    Busselez R; Lefort R; Guendouz M; Frick B; Merdrignac-Conanec O; Morineau D
    J Chem Phys; 2009 Jun; 130(21):214502. PubMed ID: 19508071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxation time and excess entropy in viscous liquids: Electric field versus temperature as control parameter.
    Richert R
    J Chem Phys; 2017 Feb; 146(6):064501. PubMed ID: 28201904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nature of molecular rotation in supercooled glycerol under nanoconfinement.
    Levchenko AA; Jain P; Trofymluk O; Yu P; Navrotsky A; Sen S
    J Phys Chem B; 2010 Mar; 114(8):3070-4. PubMed ID: 20136110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relaxation and short time dynamics of bulk liquids and fluids confined in spherical cavities and slit pores.
    Krishnan SH; Ayappa KG
    J Phys Chem B; 2005 Dec; 109(49):23237-49. PubMed ID: 16375288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible resolution of the Kauzmann paradox in supercooled liquids.
    Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011505. PubMed ID: 12935148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Nanoscale Dynamics of a Glass-Forming Liquid from Its Macroscopic Bulk Behavior and Vice Versa.
    Adrjanowicz K; Kaminski K; Tarnacka M; Szklarz G; Paluch M
    J Phys Chem Lett; 2017 Feb; 8(3):696-702. PubMed ID: 28094971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excess entropy scaling of dynamic quantities for fluids of dumbbell-shaped particles.
    Chopra R; Truskett TM; Errington JR
    J Chem Phys; 2010 Sep; 133(10):104506. PubMed ID: 20849177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. II. Thermal liquids.
    Mirigian S; Schweizer KS
    J Chem Phys; 2014 May; 140(19):194507. PubMed ID: 24852550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Method for the Determination of the Saturation Vapor Pressure above Supercooled Nanoconfined Liquids.
    Schappert K; Pelster R
    ACS Omega; 2020 May; 5(17):9649-9657. PubMed ID: 32391450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.