These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1106 related articles for article (PubMed ID: 24476342)

  • 41. Activation of class III ribonucleotide reductase by flavodoxin: a protein radical-driven electron transfer to the iron-sulfur center.
    Mulliez E; Padovani D; Atta M; Alcouffe C; Fontecave M
    Biochemistry; 2001 Mar; 40(12):3730-6. PubMed ID: 11297442
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SPASM and twitch domains in S-adenosylmethionine (SAM) radical enzymes.
    Grell TA; Goldman PJ; Drennan CL
    J Biol Chem; 2015 Feb; 290(7):3964-71. PubMed ID: 25477505
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RlmN and AtsB as models for the overproduction and characterization of radical SAM proteins.
    Lanz ND; Grove TL; Gogonea CB; Lee KH; Krebs C; Booker SJ
    Methods Enzymol; 2012; 516():125-52. PubMed ID: 23034227
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spectroscopic approaches to elucidating novel iron-sulfur chemistry in the "radical-Sam" protein superfamily.
    Walsby CJ; Ortillo D; Yang J; Nnyepi MR; Broderick WE; Hoffman BM; Broderick JB
    Inorg Chem; 2005 Feb; 44(4):727-41. PubMed ID: 15859242
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Radical SAM catalysis via an organometallic intermediate with an Fe-[5'-C]-deoxyadenosyl bond.
    Horitani M; Shisler K; Broderick WE; Hutcheson RU; Duschene KS; Marts AR; Hoffman BM; Broderick JB
    Science; 2016 May; 352(6287):822-5. PubMed ID: 27174986
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Control of radical chemistry in the AdoMet radical enzymes.
    Duschene KS; Veneziano SE; Silver SC; Broderick JB
    Curr Opin Chem Biol; 2009 Feb; 13(1):74-83. PubMed ID: 19269883
    [TBL] [Abstract][Full Text] [Related]  

  • 47. S-Adenosylmethionine: a wolf in sheep's clothing, or a rich man's adenosylcobalamin?
    Frey PA; Magnusson OT
    Chem Rev; 2003 Jun; 103(6):2129-48. PubMed ID: 12797826
    [No Abstract]   [Full Text] [Related]  

  • 48. Thioether crosslinkages created by a radical SAM enzyme.
    Zhang Q; Yu Y
    Chembiochem; 2012 May; 13(8):1097-9. PubMed ID: 22556103
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Control of adenosylmethionine-dependent radical generation in biotin synthase: a kinetic and thermodynamic analysis of substrate binding to active and inactive forms of BioB.
    Ugulava NB; Frederick KK; Jarrett JT
    Biochemistry; 2003 Mar; 42(9):2708-19. PubMed ID: 12614166
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biochemical Approaches for Understanding Iron-Sulfur Cluster Regeneration in Escherichia coli Lipoyl Synthase During Catalysis.
    McCarthy EL; Booker SJ
    Methods Enzymol; 2018; 606():217-239. PubMed ID: 30097094
    [TBL] [Abstract][Full Text] [Related]  

  • 51. S-adenosylmethionine: a 'poor man's coenzyme B12' in the reaction of lysine 2,3-aminomutase.
    Frey PA; Ballinger MD; Reed GH
    Biochem Soc Trans; 1998 Aug; 26(3):304-10. PubMed ID: 9765869
    [No Abstract]   [Full Text] [Related]  

  • 52. S-adenosylmethionine as an oxidant: the radical SAM superfamily.
    Wang SC; Frey PA
    Trends Biochem Sci; 2007 Mar; 32(3):101-10. PubMed ID: 17291766
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Radicals from S-adenosylmethionine and their application to biosynthesis.
    Roach PL
    Curr Opin Chem Biol; 2011 Apr; 15(2):267-75. PubMed ID: 21159543
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Radical SAM enzymes: surprises along the path to understanding mechanism.
    Broderick WE; Broderick JB
    J Biol Inorg Chem; 2019 Sep; 24(6):769-776. PubMed ID: 31494759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme.
    Zhang Y; Zhu X; Torelli AT; Lee M; Dzikovski B; Koralewski RM; Wang E; Freed J; Krebs C; Ealick SE; Lin H
    Nature; 2010 Jun; 465(7300):891-6. PubMed ID: 20559380
    [TBL] [Abstract][Full Text] [Related]  

  • 56. TsrM as a Model for Purifying and Characterizing Cobalamin-Dependent Radical S-Adenosylmethionine Methylases.
    Blaszczyk AJ; Wang RX; Booker SJ
    Methods Enzymol; 2017; 595():303-329. PubMed ID: 28882204
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Radical SAM enzymes: Nature's choice for radical reactions.
    Broderick JB; Broderick WE; Hoffman BM
    FEBS Lett; 2023 Jan; 597(1):92-101. PubMed ID: 36251330
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Rich Man, Poor Man Story of S-Adenosylmethionine and Cobalamin Revisited.
    Bridwell-Rabb J; Grell TAJ; Drennan CL
    Annu Rev Biochem; 2018 Jun; 87():555-584. PubMed ID: 29925255
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experimental guidelines for trapping paramagnetic reaction intermediates in radical S-adenosylmethionine enzymes.
    Balo AR; Britt RD
    Methods Enzymol; 2022; 666():451-468. PubMed ID: 35465927
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis.
    Flühe L; Marahiel MA
    Curr Opin Chem Biol; 2013 Aug; 17(4):605-12. PubMed ID: 23891473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 56.