These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 24476503)
21. Hydrophobic cellulose films with excellent strength and toughness via ball milling activated acylation of microfibrillated cellulose. Deng S; Huang R; Zhou M; Chen F; Fu Q Carbohydr Polym; 2016 Dec; 154():129-38. PubMed ID: 27577904 [TBL] [Abstract][Full Text] [Related]
22. Contact Antimicrobial Surface Obtained by Chemical Grafting of Microfibrillated Cellulose in Aqueous Solution Limiting Antibiotic Release. Saini S; Belgacem N; Mendes J; Elegir G; Bras J ACS Appl Mater Interfaces; 2015 Aug; 7(32):18076-85. PubMed ID: 26218855 [TBL] [Abstract][Full Text] [Related]
23. Fabrication of Silane-Grafted Cellulose Nanocrystals and Their Effects on the Structural, Thermal, Mechanical, and Hysteretic Behavior of Thermoplastic Polyurethane. Sun X; Yang X; Zhang J; Shang B; Lyu P; Zhang C; Liu X; Xia L Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902465 [TBL] [Abstract][Full Text] [Related]
24. Synergetic Effect of α-ZrP Nanosheets and Nitrogen-Based Flame Retardants on Thermoplastic Polyurethane. Han S; Yang F; Li Q; Sui G; Kalimuldina G; Araby S ACS Appl Mater Interfaces; 2023 Apr; 15(13):17054-17069. PubMed ID: 36944022 [TBL] [Abstract][Full Text] [Related]
25. Novel Melamine/o-Phthalaldehyde Covalent Organic Frameworks Nanosheets: Enhancement Flame Retardant and Mechanical Performances of Thermoplastic Polyurethanes. Mu X; Zhan J; Feng X; Yuan B; Qiu S; Song L; Hu Y ACS Appl Mater Interfaces; 2017 Jul; 9(27):23017-23026. PubMed ID: 28636316 [TBL] [Abstract][Full Text] [Related]
26. Cellulose nanocrystals/polyurethane nanocomposites. Study from the viewpoint of microphase separated structure. Rueda L; Saralegui A; Fernández d'Arlas B; Zhou Q; Berglund LA; Corcuera MA; Mondragon I; Eceiza A Carbohydr Polym; 2013 Jan; 92(1):751-7. PubMed ID: 23218363 [TBL] [Abstract][Full Text] [Related]
27. Highly Tough Yet Stiff, Transparent, and Recyclable PMMA Nanocomposites Incorporating TPU Nanofibril Networks with High Thermal Stability and Strong Interfacial Adhesion. Rahman SS; Mahmud MB; Omranpour H; Salehi A; Monfared AR; Park CB ACS Appl Mater Interfaces; 2024 Aug; 16(32):42687-42703. PubMed ID: 39082691 [TBL] [Abstract][Full Text] [Related]
28. Laser-Marking Mechanism of Thermoplastic Polyurethane/Bi2O3 Composites. Zhong W; Cao Z; Qiu P; Wu D; Liu C; Li H; Zhu H ACS Appl Mater Interfaces; 2015 Nov; 7(43):24142-9. PubMed ID: 26467090 [TBL] [Abstract][Full Text] [Related]
29. Electrospinning thermoplastic polyurethane-contained collagen nanofibers for tissue-engineering applications. Chen R; Qiu L; Ke Q; He C; Mo X J Biomater Sci Polym Ed; 2009; 20(11):1513-36. PubMed ID: 19619394 [TBL] [Abstract][Full Text] [Related]
30. Antimicrobial Activities of Thermoplastic Polyurethane/Clay Nanocomposites against Pathogenic Bacteria. Lee M; Kim D; Kim J; Oh JK; Castaneda H; Kim JH ACS Appl Bio Mater; 2020 Oct; 3(10):6672-6679. PubMed ID: 35019393 [TBL] [Abstract][Full Text] [Related]
31. Tunable softening and toughening of individualized cellulose nanofibers-polyurethane urea elastomer composites. Lee M; Heo MH; Lee HH; Kim YW; Shin J Carbohydr Polym; 2017 Mar; 159():125-135. PubMed ID: 28038741 [TBL] [Abstract][Full Text] [Related]
33. Novel CuCo2O4/graphitic carbon nitride nanohybrids: Highly effective catalysts for reducing CO generation and fire hazards of thermoplastic polyurethane nanocomposites. Shi Y; Yu B; Zhou K; Yuen RK; Gui Z; Hu Y; Jiang S J Hazard Mater; 2015 Aug; 293():87-96. PubMed ID: 25837685 [TBL] [Abstract][Full Text] [Related]
34. Excellent Toughening of 2,6-Diaminopyridine Derived Poly (Urethane Urea) via Dynamic Cross-Linkages and Interfering with Hydrogen Bonding of Urea Groups from Partially Coordinated Ligands. Sun A; Guo W; Zhang J; Li W; Liu X; Zhu H; Li Y; Wei L Polymers (Basel); 2019 Aug; 11(8):. PubMed ID: 31394877 [TBL] [Abstract][Full Text] [Related]
35. Effect of multi-walled carbon nanotubes on the physical properties and crystallisation of recycled PET/TPU composites. Fang C; Yang R; Zhang Z; Zhou X; Lei W; Cheng Y; Zhang W; Wang D RSC Adv; 2018 Feb; 8(16):8920-8928. PubMed ID: 35539851 [TBL] [Abstract][Full Text] [Related]
36. Defect-free surface modification methods for solubility-tunable carbon nanotubes. Lee HD; Yoo BM; Lee TH; Park HB J Colloid Interface Sci; 2018 Jan; 509():307-317. PubMed ID: 28918373 [TBL] [Abstract][Full Text] [Related]
37. Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly(butadiene) in cross-linked composites based on thiol-ene click chemistry. Rosilo H; Kontturi E; Seitsonen J; Kolehmainen E; Ikkala O Biomacromolecules; 2013 May; 14(5):1547-54. PubMed ID: 23506469 [TBL] [Abstract][Full Text] [Related]
38. Co-Influence of Nanofiller Content and 3D Printing Parameters on Mechanical Properties of Thermoplastic Polyurethane (TPU)/Halloysite Nanotube (HNT) Nanocomposites. Nugroho WT; Dong Y; Pramanik A; Zhang Z; Ramakrishna S Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446491 [TBL] [Abstract][Full Text] [Related]
39. A comparative investigation of gelatinized and regenerated starch composites reinforced by microfibrillated cellulose. Tian Y; Zhou M; Luo T; Zhu P; Cheng F; Zhang Y; Lin Y Food Chem; 2022 Mar; 373(Pt B):131470. PubMed ID: 34740051 [TBL] [Abstract][Full Text] [Related]
40. Preparation and Characterization of Tilapia Collagen-Thermoplastic Polyurethane Composite Nanofiber Membranes. Wu S; Yang L; Chen J Mar Drugs; 2022 Jun; 20(7):. PubMed ID: 35877730 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]