BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 24476576)

  • 1. Pathway-dependent inhibition of paclitaxel hydroxylation by kinase inhibitors and assessment of drug-drug interaction potentials.
    Wang Y; Wang M; Qi H; Pan P; Hou T; Li J; He G; Zhang H
    Drug Metab Dispos; 2014 Apr; 42(4):782-95. PubMed ID: 24476576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug-drug Interaction between Losartan and Paclitaxel in Human Liver Microsomes with Different CYP2C8 Genotypes.
    Mukai Y; Senda A; Toda T; Hayakawa T; Eliasson E; Rane A; Inotsume N
    Basic Clin Pharmacol Toxicol; 2015 Jun; 116(6):493-8. PubMed ID: 25424246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism-based inactivation of human cytochrome P4502C8 by drugs in vitro.
    Polasek TM; Elliot DJ; Lewis BC; Miners JO
    J Pharmacol Exp Ther; 2004 Dec; 311(3):996-1007. PubMed ID: 15304522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro assessment of time-dependent inhibitory effects on CYP2C8 and CYP3A activity by fourteen protein kinase inhibitors.
    Filppula AM; Neuvonen PJ; Backman JT
    Drug Metab Dispos; 2014 Jul; 42(7):1202-9. PubMed ID: 24713129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paclitaxel metabolism in rat and human liver microsomes is inhibited by phenolic antioxidants.
    Václavíková R; Horský S; Simek P; Gut I
    Naunyn Schmiedebergs Arch Pharmacol; 2003 Sep; 368(3):200-9. PubMed ID: 12920504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of buffer conditions on CYP2C8-mediated paclitaxel 6α-hydroxylation and CYP3A4-mediated triazolam α- and 4-hydroxylation by human liver microsomes.
    Kudo T; Ozaki Y; Kusano T; Hotta E; Oya Y; Komatsu S; Goda H; Ito K
    Xenobiotica; 2016; 46(3):241-6. PubMed ID: 26290405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide.
    Bidstrup TB; Bjørnsdottir I; Sidelmann UG; Thomsen MS; Hansen KT
    Br J Clin Pharmacol; 2003 Sep; 56(3):305-14. PubMed ID: 12919179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of repaglinide by CYP2C8 and CYP3A4 in vitro: effect of fibrates and rifampicin.
    Kajosaari LI; Laitila J; Neuvonen PJ; Backman JT
    Basic Clin Pharmacol Toxicol; 2005 Oct; 97(4):249-56. PubMed ID: 16176562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Participation of CYP2C8 and CYP3A4 in the N-demethylation of imatinib in human hepatic microsomes.
    Nebot N; Crettol S; d'Esposito F; Tattam B; Hibbs DE; Murray M
    Br J Pharmacol; 2010 Nov; 161(5):1059-69. PubMed ID: 20977456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro-in vivo extrapolation of CYP2C8-catalyzed paclitaxel 6α-hydroxylation: effects of albumin on in vitro kinetic parameters and assessment of interindividual variability in predicted clearance.
    Wattanachai N; Polasek TM; Heath TM; Uchaipichat V; Tassaneeyakul W; Tassaneeyakul W; Miners JO
    Eur J Clin Pharmacol; 2011 Aug; 67(8):815-24. PubMed ID: 21305272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiologically-Based Pharmacokinetic Predictions of the Effect of Curcumin on Metabolism of Imatinib and Bosutinib: In Vitro and In Vivo Disconnect.
    Adiwidjaja J; Boddy AV; McLachlan AJ
    Pharm Res; 2020 Jun; 37(7):128. PubMed ID: 32529309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potent mechanism-based inhibition of CYP3A4 by imatinib explains its liability to interact with CYP3A4 substrates.
    Filppula AM; Laitila J; Neuvonen PJ; Backman JT
    Br J Pharmacol; 2012 Apr; 165(8):2787-98. PubMed ID: 22014153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the Contribution of CYP2C8 and CYP3A4 in Repaglinide Metabolism by Human Liver Microsomes Under Various Buffer Conditions.
    Kudo T; Goda H; Yokosuka Y; Tanaka R; Komatsu S; Ito K
    J Pharm Sci; 2017 Sep; 106(9):2847-2852. PubMed ID: 28238899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vitro Screening of Six Protein Kinase Inhibitors for Time-Dependent Inhibition of CYP2C8 and CYP3A4: Possible Implications with regard to Drug-Drug Interactions.
    Filppula AM; Mustonen TM; Backman JT
    Basic Clin Pharmacol Toxicol; 2018 Dec; 123(6):739-748. PubMed ID: 29956478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoinhibition of CYP3A4 leads to important role of CYP2C8 in imatinib metabolism: variability in CYP2C8 activity may alter plasma concentrations and response.
    Filppula AM; Neuvonen M; Laitila J; Neuvonen PJ; Backman JT
    Drug Metab Dispos; 2013 Jan; 41(1):50-9. PubMed ID: 23028140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of human liver microsomes to explain individual differences in paclitaxel metabolism by CYP2C8 and CYP3A4.
    Taniguchi R; Kumai T; Matsumoto N; Watanabe M; Kamio K; Suzuki S; Kobayashi S
    J Pharmacol Sci; 2005 Jan; 97(1):83-90. PubMed ID: 15655291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confirmation that cytochrome P450 2C8 (CYP2C8) plays a minor role in (S)-(+)- and (R)-(-)-ibuprofen hydroxylation in vitro.
    Chang SY; Li W; Traeger SC; Wang B; Cui D; Zhang H; Wen B; Rodrigues AD
    Drug Metab Dispos; 2008 Dec; 36(12):2513-22. PubMed ID: 18787056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The tyrosine kinase inhibitor nilotinib selectively inhibits CYP2C8 activities in human liver microsomes.
    Kim MJ; Lee JW; Oh KS; Choi CS; Kim KH; Han WS; Yoon CN; Chung ES; Kim DH; Shin JG
    Drug Metab Pharmacokinet; 2013; 28(6):462-7. PubMed ID: 23629743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of CYP3A4 and CYP2C8 as the major cytochrome P450 s responsible for morphine N-demethylation in human liver microsomes.
    Projean D; Morin PE; Tu TM; Ducharme J
    Xenobiotica; 2003 Aug; 33(8):841-54. PubMed ID: 12936704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pioglitazone is metabolised by CYP2C8 and CYP3A4 in vitro: potential for interactions with CYP2C8 inhibitors.
    Jaakkola T; Laitila J; Neuvonen PJ; Backman JT
    Basic Clin Pharmacol Toxicol; 2006 Jul; 99(1):44-51. PubMed ID: 16867170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.