These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Common germline variation at the TERT locus contributes to familial clustering of myeloproliferative neoplasms. Jäger R; Harutyunyan AS; Rumi E; Pietra D; Berg T; Olcaydu D; Houlston RS; Cazzola M; Kralovics R Am J Hematol; 2014 Dec; 89(12):1107-10. PubMed ID: 25196853 [TBL] [Abstract][Full Text] [Related]
3. TERT rs2736100 A>C SNP and JAK2 46/1 haplotype significantly contribute to the occurrence of JAK2 V617F and CALR mutated myeloproliferative neoplasms - a multicentric study on 529 patients. Trifa AP; Bănescu C; Tevet M; Bojan A; Dima D; Urian L; Török-Vistai T; Popov VM; Zdrenghea M; Petrov L; Vasilache A; Murat M; Georgescu D; Popescu M; Pătrinoiu O; Balea M; Costache R; Coleș E; Șaguna C; Berbec N; Vlădăreanu AM; Mihăilă RG; Bumbea H; Cucuianu A; Popp RA Br J Haematol; 2016 Jul; 174(2):218-26. PubMed ID: 27061303 [TBL] [Abstract][Full Text] [Related]
4. The Hong T; Luo M; Liu Q Genet Test Mol Biomarkers; 2020 Apr; 24(4):181-187. PubMed ID: 32202925 [No Abstract] [Full Text] [Related]
5. TERT and JAK2 polymorphisms define genetic predisposition to myeloproliferative neoplasms in Japanese patients. Matsuguma M; Yujiri T; Yamamoto K; Kajimura Y; Tokunaga Y; Tanaka M; Tanaka Y; Nakamura Y; Tanizawa Y Int J Hematol; 2019 Dec; 110(6):690-698. PubMed ID: 31571131 [TBL] [Abstract][Full Text] [Related]
6. Co-occurrence of Myeloproliferative Neoplasms and Solid Tumors Is Attributed to a Synergism Between Cytoreductive Therapy and the Common TERT Polymorphism rs2736100. Krahling T; Balassa K; Kiss KP; Bors A; Batai A; Halm G; Egyed M; Fekete S; Remenyi P; Masszi T; Tordai A; Andrikovics H Cancer Epidemiol Biomarkers Prev; 2016 Jan; 25(1):98-104. PubMed ID: 26487696 [TBL] [Abstract][Full Text] [Related]
7. TERT rs2736100 genotypes are associated with differential risk of myeloproliferative neoplasms in Swedish and Chinese male patient populations. Dahlström J; Liu T; Yuan X; Saft L; Ghaderi M; Wei YB; Lavebratt C; Li P; Zheng C; Björkholm M; Xu D Ann Hematol; 2016 Oct; 95(11):1825-32. PubMed ID: 27561898 [TBL] [Abstract][Full Text] [Related]
8. Rare germline variant contributions to myeloid malignancy susceptibility. Li ST; Wang J; Wei R; Shi R; Adema V; Nagata Y; Kerr CM; Kuzmanovic T; Przychodzen B; Sole F; Maciejewski JP; LaFramboise T Leukemia; 2020 Jun; 34(6):1675-1678. PubMed ID: 31911633 [No Abstract] [Full Text] [Related]
9. The TERT promoter mutation incidence is modified by germline TERT rs2736098 and rs2736100 polymorphisms in hepatocellular carcinoma. Yuan X; Cheng G; Yu J; Zheng S; Sun C; Sun Q; Li K; Lin Z; Liu T; Li P; Xu Y; Kong F; Bjorkholm M; Xu D Oncotarget; 2017 Apr; 8(14):23120-23129. PubMed ID: 28416747 [TBL] [Abstract][Full Text] [Related]
10. An analysis of the Palmer D; Nacheva E Leuk Lymphoma; 2021 May; 62(5):1255-1258. PubMed ID: 33349109 [No Abstract] [Full Text] [Related]
11. Evaluation of the Borsani O; Jäger R; Pietra D; Flieder I; Riccaboni G; Kralovics R; Rumi E Haematologica; 2024 Aug; 109(8):2738-2740. PubMed ID: 38654656 [No Abstract] [Full Text] [Related]
13. A new family with a germline ANKRD26 mutation and predisposition to myeloid malignancies. Marquez R; Hantel A; Lorenz R; Neistadt B; Wong J; Churpek JE; Mardini NA; Shaukat I; Gurbuxani S; Miller JL; Godley LA Leuk Lymphoma; 2014 Dec; 55(12):2945-6. PubMed ID: 24628296 [No Abstract] [Full Text] [Related]
14. The TERT rs2736100 polymorphism increases cancer risk: A meta-analysis. Li H; Xu Y; Mei H; Peng L; Li X; Tang J Oncotarget; 2017 Jun; 8(24):38693-38705. PubMed ID: 28418878 [TBL] [Abstract][Full Text] [Related]
15. Somatic mutations in calreticulin can be found in pedigrees with familial predisposition to myeloproliferative neoplasms. Lundberg P; Nienhold R; Ambrosetti A; Cervantes F; Pérez-Encinas MM; Skoda RC Blood; 2014 Apr; 123(17):2744-5. PubMed ID: 24764562 [No Abstract] [Full Text] [Related]
16. [Myeloid neoplasms with germline predisposition]. Yoshida K Rinsho Ketsueki; 2023; 64(9):949-954. PubMed ID: 37793870 [TBL] [Abstract][Full Text] [Related]
17. Germline genetic factors in the pathogenesis of myeloproliferative neoplasms. Bellanné-Chantelot C; Rabadan Moraes G; Schmaltz-Panneau B; Marty C; Vainchenker W; Plo I Blood Rev; 2020 Jul; 42():100710. PubMed ID: 32532454 [TBL] [Abstract][Full Text] [Related]
18. Germline transmission of LNKE208Q variant in a family with myeloproliferative neoplasms. Loscocco GG; Mannarelli C; Pacilli A; Fanelli T; Rotunno G; Gesullo F; Corbizi-Fattori G; Vannucchi AM; Guglielmelli P Am J Hematol; 2016 Sep; 91(9):E356. PubMed ID: 27237057 [No Abstract] [Full Text] [Related]
19. Myeloid neoplasms with germline predisposition: Practical considerations and complications in the search for new susceptibility loci. Carraway HE; LaFramboise T Best Pract Res Clin Haematol; 2020 Sep; 33(3):101191. PubMed ID: 33038980 [TBL] [Abstract][Full Text] [Related]
20. The role of the JAK2 GGCC haplotype and the TET2 gene in familial myeloproliferative neoplasms. Olcaydu D; Rumi E; Harutyunyan A; Passamonti F; Pietra D; Pascutto C; Berg T; Jäger R; Hammond E; Cazzola M; Kralovics R Haematologica; 2011 Mar; 96(3):367-74. PubMed ID: 21173100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]