BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

543 related articles for article (PubMed ID: 24476892)

  • 1. Landscape and variation of RNA secondary structure across the human transcriptome.
    Wan Y; Qu K; Zhang QC; Flynn RA; Manor O; Ouyang Z; Zhang J; Spitale RC; Snyder MP; Segal E; Chang HY
    Nature; 2014 Jan; 505(7485):706-9. PubMed ID: 24476892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA secondary structure profiling in zebrafish reveals unique regulatory features.
    Kaushik K; Sivadas A; Vellarikkal SK; Verma A; Jayarajan R; Pandey S; Sethi T; Maiti S; Scaria V; Sivasubbu S
    BMC Genomics; 2018 Feb; 19(1):147. PubMed ID: 29448945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidation of transcriptome-wide microRNA binding sites in human cardiac tissues by Ago2 HITS-CLIP.
    Spengler RM; Zhang X; Cheng C; McLendon JM; Skeie JM; Johnson FL; Davidson BL; Boudreau RL
    Nucleic Acids Res; 2016 Sep; 44(15):7120-31. PubMed ID: 27418678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryptic sequence features in the active postmortem transcriptome.
    Noble PA; Pozhitkov AE
    BMC Genomics; 2018 Sep; 19(1):675. PubMed ID: 30217147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide measurement of RNA folding energies.
    Wan Y; Qu K; Ouyang Z; Kertesz M; Li J; Tibshirani R; Makino DL; Nutter RC; Segal E; Chang HY
    Mol Cell; 2012 Oct; 48(2):169-81. PubMed ID: 22981864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural imprints in vivo decode RNA regulatory mechanisms.
    Spitale RC; Flynn RA; Zhang QC; Crisalli P; Lee B; Jung JW; Kuchelmeister HY; Batista PJ; Torre EA; Kool ET; Chang HY
    Nature; 2015 Mar; 519(7544):486-90. PubMed ID: 25799993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide annotation of microRNA primary transcript structures reveals novel regulatory mechanisms.
    Chang TC; Pertea M; Lee S; Salzberg SL; Mendell JT
    Genome Res; 2015 Sep; 25(9):1401-9. PubMed ID: 26290535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural effects of linkage disequilibrium on the transcriptome.
    Martin JS; Halvorsen M; Davis-Neulander L; Ritz J; Gopinath C; Beauregard A; Laederach A
    RNA; 2012 Jan; 18(1):77-87. PubMed ID: 22109839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systematic analysis of disease-associated variants in the 3' regulatory regions of human protein-coding genes II: the importance of mRNA secondary structure in assessing the functionality of 3' UTR variants.
    Chen JM; Férec C; Cooper DN
    Hum Genet; 2006 Oct; 120(3):301-33. PubMed ID: 16807757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RBP-Var: a database of functional variants involved in regulation mediated by RNA-binding proteins.
    Mao F; Xiao L; Li X; Liang J; Teng H; Cai W; Sun ZS
    Nucleic Acids Res; 2016 Jan; 44(D1):D154-63. PubMed ID: 26635394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Widespread splicing of repetitive element loci into coding regions of gene transcripts.
    Darby MM; Leek JT; Langmead B; Yolken RH; Sabunciyan S
    Hum Mol Genet; 2016 Nov; 25(22):4962-4982. PubMed ID: 28171598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo computational identification of stress-related sequence motifs and microRNA target sites in untranslated regions of a plant translatome.
    Munusamy P; Zolotarov Y; Meteignier LV; Moffett P; Strömvik MV
    Sci Rep; 2017 Mar; 7():43861. PubMed ID: 28276452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The RNA-Binding Protein A1CF Regulates Hepatic Fructose and Glycerol Metabolism via Alternative RNA Splicing.
    Nikolaou KC; Vatandaslar H; Meyer C; Schmid MW; Tuschl T; Stoffel M
    Cell Rep; 2019 Oct; 29(2):283-300.e8. PubMed ID: 31597092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The regulatory impact of RNA-binding proteins on microRNA targeting.
    Kim S; Kim S; Chang HR; Kim D; Park J; Son N; Park J; Yoon M; Chae G; Kim YK; Kim VN; Kim YK; Nam JW; Shin C; Baek D
    Nat Commun; 2021 Aug; 12(1):5057. PubMed ID: 34417449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative promoter use and splice variation in the human histamine H1 receptor gene.
    Swan C; Richards SA; Duroudier NP; Sayers I; Hall IP
    Am J Respir Cell Mol Biol; 2006 Jul; 35(1):118-26. PubMed ID: 16484687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locating protein-coding sequences under selection for additional, overlapping functions in 29 mammalian genomes.
    Lin MF; Kheradpour P; Washietl S; Parker BJ; Pedersen JS; Kellis M
    Genome Res; 2011 Nov; 21(11):1916-28. PubMed ID: 21994248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-transcriptional 3´-UTR cleavage of mRNA transcripts generates thousands of stable uncapped autonomous RNA fragments.
    Malka Y; Steiman-Shimony A; Rosenthal E; Argaman L; Cohen-Daniel L; Arbib E; Margalit H; Kaplan T; Berger M
    Nat Commun; 2017 Dec; 8(1):2029. PubMed ID: 29229900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the transcriptome of Haloferax volcanii, grown under four different conditions, with mixed RNA-Seq.
    Laass S; Monzon VA; Kliemt J; Hammelmann M; Pfeiffer F; Förstner KU; Soppa J
    PLoS One; 2019; 14(4):e0215986. PubMed ID: 31039177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional conservation of both CDS- and 3'-UTR-located microRNA binding sites between species.
    Liu G; Zhang R; Xu J; Wu CI; Lu X
    Mol Biol Evol; 2015 Mar; 32(3):623-8. PubMed ID: 25414126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The code within the code: microRNAs target coding regions.
    Forman JJ; Coller HA
    Cell Cycle; 2010 Apr; 9(8):1533-41. PubMed ID: 20372064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.