BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24477574)

  • 21. The presence of multiple regions of homozygous deletion at the CSMD1 locus in oral squamous cell carcinoma question the role of CSMD1 in head and neck carcinogenesis.
    Toomes C; Jackson A; Maguire K; Wood J; Gollin S; Ishwad C; Paterson I; Prime S; Parkinson K; Bell S; Woods G; Markham A; Oliver R; Woodward R; Sloan P; Dixon M; Read A; Thakker N
    Genes Chromosomes Cancer; 2003 Jun; 37(2):132-40. PubMed ID: 12696061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic and epigenetic alterations in the tumour, tumour margins, and normal buccal mucosa of patients with oral cancer.
    Eljabo N; Nikolic N; Carkic J; Jelovac D; Lazarevic M; Tanic N; Milasin J
    Int J Oral Maxillofac Surg; 2018 Aug; 47(8):976-982. PubMed ID: 29449053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of major genetic alterations in neuroblastoma.
    Costa RA; Seuánez HN
    Mol Biol Rep; 2018 Jun; 45(3):287-295. PubMed ID: 29455316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TERT promoter hot spot mutations are frequent in Indian cervical and oral squamous cell carcinomas.
    Vinothkumar V; Arunkumar G; Revathidevi S; Arun K; Manikandan M; Rao AK; Rajkumar KS; Ajay C; Rajaraman R; Ramani R; Murugan AK; Munirajan AK
    Tumour Biol; 2016 Jun; 37(6):7907-13. PubMed ID: 26700669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of gene copy number alterations by multiplex ligation-dependent probe amplification in columnar cell lesions of the breast.
    Verschuur-Maes AH; Moelans CB; de Bruin PC; van Diest PJ
    Cell Oncol (Dordr); 2014 Apr; 37(2):147-54. PubMed ID: 24692099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and validation of WISP1 as an epigenetic regulator of metastasis in oral squamous cell carcinoma.
    Clausen MJ; Melchers LJ; Mastik MF; Slagter-Menkema L; Groen HJ; van der Laan BF; van Criekinge W; de Meyer T; Denil S; Wisman GB; Roodenburg JL; Schuuring E
    Genes Chromosomes Cancer; 2016 Jan; 55(1):45-59. PubMed ID: 26391330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential marker of oral squamous cell carcinoma aggressiveness detected by fluorescence in situ hybridization in fine-needle aspiration biopsies.
    Miyamoto R; Uzawa N; Nagaoka S; Nakakuki K; Hirata Y; Amagasa T
    Cancer; 2002 Nov; 95(10):2152-9. PubMed ID: 12412169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A consistent pattern of RIN1 rearrangements in oral squamous cell carcinoma cell lines supports a breakage-fusion-bridge cycle model for 11q13 amplification.
    Shuster MI; Han L; Le Beau MM; Davis E; Sawicki M; Lese CM; Park NH; Colicelli J; Gollin SM
    Genes Chromosomes Cancer; 2000 Jun; 28(2):153-63. PubMed ID: 10825000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of human papillomavirus DNA sequences in oral squamous cell carcinomas and their relation to p53 and proliferating cell nuclear antigen expression.
    Shindoh M; Chiba I; Yasuda M; Saito T; Funaoka K; Kohgo T; Amemiya A; Sawada Y; Fujinaga K
    Cancer; 1995 Nov; 76(9):1513-21. PubMed ID: 8635051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of Gene Amplification by Multiplex Ligation-Dependent Probe Amplification in Comparison with In Situ Hybridization and Immunohistochemistry.
    Tabarestani S; Ghaderian SM; Rezvani H
    Asian Pac J Cancer Prev; 2015; 16(17):7997-8002. PubMed ID: 26625832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of PAK4 as a putative target gene for amplification within 19q13.12-q13.2 in oral squamous-cell carcinoma.
    Begum A; Imoto I; Kozaki K; Tsuda H; Suzuki E; Amagasa T; Inazawa J
    Cancer Sci; 2009 Oct; 100(10):1908-16. PubMed ID: 19594544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aneuploidy identification in pre-B acute lymphoblastic leukemia patients at diagnosis by Multiplex Ligation-dependent Probe Amplification (MLPA).
    Vázquez-Reyes A; Bobadilla-Morales L; Barba-Barba C; Macías-Salcedo G; Serafín-Saucedo G; Velázquez-Rivera ME; Almodóvar-Cuevas MC; Márquez-Mora A; Pimentel-Gutiérrez HJ; Ortega-de-la-Torre C; Cruz-Osorio RM; Nava-Gervasio S; Rivera-Vargas J; Sánchez-Zubieta F; Corona-Rivera JR; Corona-Rivera A
    Leuk Res; 2017 Aug; 59():117-123. PubMed ID: 28624713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Her2 expression and gene amplification is rarely detectable in patients with oral squamous cell carcinomas.
    Hanken H; Gaudin R; Gröbe A; Fraederich M; Eichhorn W; Smeets R; Simon R; Sauter G; Grupp K; Izbicki JR; Sehner S; Heiland M; Blessmann M
    J Oral Pathol Med; 2014 Apr; 43(4):304-8. PubMed ID: 24645976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. p53 alterations and HPV infections are common in oral SCC: p53 gene mutations correlate with the absence of HPV 16-E6 DNA.
    Penhallow J; Steingrimsdottir H; Elamin F; Warnakulasuriya S; Farzaneh F; Johnson N; Tavassoli M
    Int J Oncol; 1998 Jan; 12(1):59-68. PubMed ID: 9454887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic profile of second primary tumors and recurrences in head and neck squamous cell carcinomas.
    Gutiérrez VF; Marcos CÁ; Llorente JL; Guervós MA; Iglesias FD; Tamargo LA; Hermsen M
    Head Neck; 2012 Jun; 34(6):830-9. PubMed ID: 22127891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescence in situ hybridization for detecting genomic alterations of cyclin D1 and p16 in oral squamous cell carcinomas.
    Uzawa N; Sonoda I; Myo K; Takahashi K; Miyamoto R; Amagasa T
    Cancer; 2007 Nov; 110(10):2230-9. PubMed ID: 17893905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of p16(INK4A), p53, and Rb proteins are independent from the presence of human papillomavirus genes in oral squamous cell carcinoma.
    Nemes JA; Deli L; Nemes Z; Márton IJ
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2006 Sep; 102(3):344-52. PubMed ID: 16920543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A modified multiplex ligation-dependent probe amplification method for the detection of 22q11.2 copy number variations in patients with congenital heart disease.
    Zhang X; Xu Y; Liu D; Geng J; Chen S; Jiang Z; Fu Q; Sun K
    BMC Genomics; 2015 May; 16(1):364. PubMed ID: 25952753
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silencing of long non-coding RNA CCAT2 depressed malignancy of oral squamous cell carcinoma via Wnt/β-catenin pathway.
    Ma Y; Hu X; Shang C; Zhong M; Guo Y
    Tumour Biol; 2017 Jul; 39(7):1010428317717670. PubMed ID: 28671055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromosome 1q25.3 copy number alterations in primary breast cancers detected by multiplex ligation-dependent probe amplification and allelic imbalance assays and its comparison with fluorescent in situ hybridization assays.
    Wiechec E; Overgaard J; Kjeldsen E; Hansen LL
    Cell Oncol (Dordr); 2013 Apr; 36(2):113-20. PubMed ID: 23248035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.