These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 24477868)

  • 41. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake.
    Vogel-Mikus K; Pongrac P; Kump P; Necemer M; Regvar M
    Environ Pollut; 2006 Jan; 139(2):362-71. PubMed ID: 15998561
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Localisation and quantification of elements within seeds of Cd/Zn hyperaccumulator Thlaspi praecox by micro-PIXE.
    Vogel-Mikus K; Pongrac P; Kump P; Necemer M; Simcic J; Pelicon P; Budnar M; Povh B; Regvar M
    Environ Pollut; 2007 May; 147(1):50-9. PubMed ID: 17070633
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of Solen brevis as a biomonitor for Cd, Pb and Zn on the intertidal zones of Bushehr-Persian Gulf, Iran.
    Salahshur S; Bakhtiari AR; Kochanian P
    Bull Environ Contam Toxicol; 2012 Jun; 88(6):951-5. PubMed ID: 22481208
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens--a field case.
    Wang FY; Lin XG; Yin R
    Environ Pollut; 2007 May; 147(1):248-55. PubMed ID: 17011687
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France).
    Audry S; Schäfer J; Blanc G; Jouanneau JM
    Environ Pollut; 2004 Dec; 132(3):413-26. PubMed ID: 15325457
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bulk and bioavailable heavy metals (Cd, Cu, Pb, and Zn) in surface sediments from Mazatlán Harbor (SE Gulf of California).
    Jara-Marini ME; Soto-Jiménez MF; Páez-Osuna F
    Bull Environ Contam Toxicol; 2008 Feb; 80(2):150-3. PubMed ID: 18196190
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia.
    Vogel-Mikus K; Drobne D; Regvar M
    Environ Pollut; 2005 Jan; 133(2):233-42. PubMed ID: 15519454
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accumulation and tolerance characteristics of zinc in Agropyron cristatum plants exposed to zinc-contaminated soil.
    Meng L; Guo Q; Mao P; Tian X
    Bull Environ Contam Toxicol; 2013 Sep; 91(3):298-301. PubMed ID: 23771314
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A link between lead and cadmium kinetic speciation in seawater and accumulation by the green alga Ulva lactuca.
    Muse JO; Carducci CN; Stripeikis JD; Tudino MB; Fernández FM
    Environ Pollut; 2006 May; 141(1):126-30. PubMed ID: 16289726
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Decrease of Zn, Cd and Pb concentrations in marine fish species over a decade as response to reduction of anthropogenic inputs: the example of Tagus estuary.
    Raimundo J; Pereira P; Caetano M; Cabrita MT; Vale C
    Mar Pollut Bull; 2011 Dec; 62(12):2854-8. PubMed ID: 21986541
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The use of bio-energy crops (Zea mays) for 'phytoattenuation' of heavy metals on moderately contaminated soils: a field experiment.
    Meers E; Van Slycken S; Adriaensen K; Ruttens A; Vangronsveld J; Du Laing G; Witters N; Thewys T; Tack FM
    Chemosphere; 2010 Jan; 78(1):35-41. PubMed ID: 19837447
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.
    Yoon J; Cao X; Zhou Q; Ma LQ
    Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix smyrnensis Bunge).
    Kadukova J; Manousaki E; Kalogerakis N
    Int J Phytoremediation; 2008; 10(1):31-46. PubMed ID: 18709930
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of different levels of leachate on phytoremediation of pyrene-contaminated soil and simultaneous extraction of lead and cadmium.
    Salehi N; Azhdarpoor A; Shirdarreh M
    Chemosphere; 2020 May; 246():125845. PubMed ID: 31918113
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Study on chromium-binding capacity of Callitriche cophocarpa in an aquatic environment.
    Augustynowicz J; Kyzioł-Komosińska J; Smoleń S; Waloszek A
    Arch Environ Contam Toxicol; 2013 Apr; 64(3):410-8. PubMed ID: 23247557
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aquatic macrophytes mediated remediation of toxic metals from moderately contaminated industrial effluent.
    Saraswat S; Rai DJPN
    Int J Phytoremediation; 2018 Jul; 20(9):876-884. PubMed ID: 29873544
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling of the bioaccumulative efficiency of
    Ergönül MB; Nassouhi D; Atasağun S
    Int J Phytoremediation; 2020; 22(2):201-209. PubMed ID: 31475565
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Do chromium-resistant bacterial symbionts of hyperaccumulator Callitriche cophocarpa support their host in phytobial remediation of water?
    Augustynowicz J; Kowalczyk A; Latowski D; Kołton A; Sitek E; Kostecka-Gugała A
    Sci Total Environ; 2024 Apr; 922():171327. PubMed ID: 38428606
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Micropropagation of Myriophyllum alterniflorum (Haloragaceae) for stream rehabilitation: first in vitro culture and reintroduction assays of a heavy-metal hyperaccumulator immersed macrophyte.
    Delmail D; Labrousse P; Hourdin P; Larcher L; Moesch C; Botineau M
    Int J Phytoremediation; 2013; 15(7):647-62. PubMed ID: 23819265
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phytoremediation potential of Cd and Zn by wetland plants, Colocasia esculenta L. Schott., Cyperus malaccensis Lam. and Typha angustifolia L. grown in hydroponics.
    Chayapan P; Kruatrachue M; Meetam M; Pokethitiyook P
    J Environ Biol; 2015 Sep; 36(5):1179-83. PubMed ID: 26521563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.