BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24477882)

  • 21. Dynamic flux responses in riboflavin overproducing Bacillus subtilis to increasing glucose limitation in fed-batch culture.
    Rühl M; Zamboni N; Sauer U
    Biotechnol Bioeng; 2010 Mar; 105(4):795-804. PubMed ID: 19882734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Transketolase mutation in riboflavin-synthesizing strains of Bacillus subtilis].
    Gershanovich VN; Kukanova AIa; Galushkina ZM; Stepanov AI
    Mol Gen Mikrobiol Virusol; 2000; (3):3-7. PubMed ID: 10975072
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs.
    Wu QL; Chen T; Gan Y; Chen X; Zhao XM
    Appl Microbiol Biotechnol; 2007 Sep; 76(4):783-94. PubMed ID: 17576552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. De novo engineering riboflavin production Bacillus subtilis by overexpressing the downstream genes in the purine biosynthesis pathway.
    Liu C; Xia M; Fang H; Xu F; Wang S; Zhang D
    Microb Cell Fact; 2024 May; 23(1):159. PubMed ID: 38822377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CcpN: a moonlighting protein regulating catabolite repression of gluconeogenic genes in
    Sharma K; Sultana T; Dahms TES; Dillon JR
    Can J Microbiol; 2020 Dec; 66(12):723-732. PubMed ID: 32762636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures.
    Dauner M; Sonderegger M; Hochuli M; Szyperski T; Wüthrich K; Hohmann HP; Sauer U; Bailey JE
    Appl Environ Microbiol; 2002 Apr; 68(4):1760-71. PubMed ID: 11916694
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic flux responses to genetic modification for shikimic acid production by Bacillus subtilis strains.
    Liu DF; Ai GM; Zheng QX; Liu C; Jiang CY; Liu LX; Zhang B; Liu YM; Yang C; Liu SJ
    Microb Cell Fact; 2014 Mar; 13(1):40. PubMed ID: 24628944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased Production of Riboflavin by Coordinated Expression of Multiple Genes in Operons in
    You J; Du Y; Pan X; Zhang X; Yang T; Rao Z
    ACS Synth Biol; 2022 May; 11(5):1801-1810. PubMed ID: 35467340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving riboflavin production by modifying related metabolic pathways in Bacillus subtilis.
    Xu J; Wang C; Ban R
    Lett Appl Microbiol; 2022 Jan; 74(1):78-83. PubMed ID: 34704264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improve uridine production by modifying related metabolic pathways in Bacillus subtilis.
    Zhang X; Wang C; Liu L; Ban R
    Biotechnol Lett; 2020 Apr; 42(4):551-555. PubMed ID: 31993847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rational engineering of transcriptional riboswitches leads to enhanced metabolite levels in Bacillus subtilis.
    Boumezbeur AH; Bruer M; Stoecklin G; Mack M
    Metab Eng; 2020 Sep; 61():58-68. PubMed ID: 32413407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis.
    Sauer U; Hatzimanikatis V; Hohmann HP; Manneberg M; van Loon AP; Bailey JE
    Appl Environ Microbiol; 1996 Oct; 62(10):3687-96. PubMed ID: 8837424
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis.
    Zamboni N; Mouncey N; Hohmann HP; Sauer U
    Metab Eng; 2003 Jan; 5(1):49-55. PubMed ID: 12749844
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combinatorial engineering for improved menaquinone-4 biosynthesis in Bacillus subtilis.
    Yuan P; Cui S; Liu Y; Li J; Lv X; Liu L; Du G
    Enzyme Microb Technol; 2020 Nov; 141():109652. PubMed ID: 33051011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic engineering of Bacillus subtilis for enhancing riboflavin production by alleviating dissolved oxygen limitation.
    You J; Yang C; Pan X; Hu M; Du Y; Osire T; Yang T; Rao Z
    Bioresour Technol; 2021 Aug; 333():125228. PubMed ID: 33957462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol.
    Hao T; Han B; Ma H; Fu J; Wang H; Wang Z; Tang B; Chen T; Zhao X
    Mol Biosyst; 2013 Aug; 9(8):2034-44. PubMed ID: 23666098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol.
    Toivari MH; Maaheimo H; Penttilä M; Ruohonen L
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):731-9. PubMed ID: 19711072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production.
    Stahmann KP; Revuelta JL; Seulberger H
    Appl Microbiol Biotechnol; 2000 May; 53(5):509-16. PubMed ID: 10855708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Malate metabolism in Bacillus subtilis: distinct roles for three classes of malate-oxidizing enzymes.
    Meyer FM; Stülke J
    FEMS Microbiol Lett; 2013 Feb; 339(1):17-22. PubMed ID: 23136871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Modification in de novo purine pathway for adenosine accumulation by Bacillus subtilis].
    Liu Y; He J; Xie X; Xu Q; Zhang C; Chen N
    Wei Sheng Wu Xue Bao; 2014 Jun; 54(6):641-7. PubMed ID: 25272812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.