These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 24478141)

  • 1. Tandem Pd/Au-catalyzed route to α-sulfenylated carbonyl compounds from terminal propargylic alcohols and thiols.
    Biswas S; Watile RA; Samec JS
    Chemistry; 2014 Feb; 20(8):2159-63. PubMed ID: 24478141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atom-efficient gold(I)-chloride-catalyzed synthesis of α-sulfenylated carbonyl compounds from propargylic alcohols and aryl thiols: substrate scope and experimental and theoretical mechanistic investigation.
    Biswas S; Dahlstrand C; Watile RA; Kalek M; Himo F; Samec JS
    Chemistry; 2013 Dec; 19(52):17939-50. PubMed ID: 24272980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A gold(I)-catalyzed route to α-sulfenylated carbonyl compounds from propargylic alcohols and aryl thiols.
    Biswas S; Samec JS
    Chem Commun (Camb); 2012 Jul; 48(52):6586-8. PubMed ID: 22622449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly stereoselective palladium-catalyzed dithiocarbonylation of propargylic mesylates with thiols and carbon monoxide.
    Xiao WJ; Alper H
    J Org Chem; 2005 Mar; 70(5):1802-7. PubMed ID: 15730305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Atom Economic Approach To Prepare Chiral α-Sulfenylated Ketones.
    Margalef J; Watile RA; Rukkijakan T; Samec JSM
    J Org Chem; 2019 Sep; 84(17):11219-11227. PubMed ID: 31385499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A General Route to β-Substituted Pyrroles by Transition-Metal Catalysis.
    Bunrit A; Sawadjoon S; Tšupova S; Sjöberg PJ; Samec JS
    J Org Chem; 2016 Feb; 81(4):1450-60. PubMed ID: 26789020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic scope and mechanistic studies of Ru(OH)x/Al2O3-catalyzed heterogeneous hydrogen-transfer reactions.
    Yamaguchi K; Koike T; Kotani M; Matsushita M; Shinachi S; Mizuno N
    Chemistry; 2005 Nov; 11(22):6574-82. PubMed ID: 16092142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Palladium-catalyzed regioselective synthesis of mono and bis(arylthiol) alkenes from propargyl carbonate and thiophenol.
    Chatterjee I; Panda G
    Org Biomol Chem; 2023 May; 21(18):3800-3810. PubMed ID: 37074072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of indeno[1,2-c]furans via a Pd-catalyzed bicyclization of 2-alkynyliodobenzene and propargylic alcohol.
    Jin J; Luo Y; Zhou C; Chen X; Wen Q; Lu P; Wang Y
    J Org Chem; 2012 Dec; 77(24):11368-71. PubMed ID: 23198658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-catalyzed transformations of propargylic alcohols into alpha,beta-unsaturated carbonyl compounds: from the Meyer-Schuster and Rupe rearrangements to redox isomerizations.
    Cadierno V; Crochet P; García-Garrido SE; Gimeno J
    Dalton Trans; 2010 May; 39(17):4015-31. PubMed ID: 20390164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold-catalyzed regioselective hydration of propargyl acetates assisted by a neighboring carbonyl group: access to α-acyloxy methyl ketones and synthesis of (±)-actinopolymorphol B.
    Ghosh N; Nayak S; Sahoo AK
    J Org Chem; 2011 Jan; 76(2):500-11. PubMed ID: 21184617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ag- and Au-catalyzed addition of alcohols to ynimides: β-regioselective carbonylation and production of oxazoles.
    Sueda T; Kawada A; Urashi Y; Teno N
    Org Lett; 2013 Apr; 15(7):1560-3. PubMed ID: 23496249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver-catalyzed cross-coupling of propargylic alcohols with isocyanides: an atom-economical synthesis of 2,3-allenamides.
    Liu J; Liu Z; Wu N; Liao P; Bi X
    Chemistry; 2014 Feb; 20(8):2154-8. PubMed ID: 24478174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold-Catalyzed Tandem Annulations of Pyridylhomopropargylic Alcohols with Propargyl Alcohols.
    Li XS; Xu DT; Niu ZJ; Li M; Shi WY; Wang CT; Wei WX; Liang YM
    Org Lett; 2021 Feb; 23(3):832-836. PubMed ID: 33507087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palladium pincer complex-catalyzed trimethyltin substitution of functionalized propargylic substrates. An efficient route to propargyl- and allenyl-stannanes.
    Kjellgren J; Sundén H; Szabó KJ
    J Am Chem Soc; 2004 Jan; 126(2):474-5. PubMed ID: 14719938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold-catalyzed efficient preparation of linear alpha-iodoenones from propargylic acetates.
    Yu M; Zhang G; Zhang L
    Org Lett; 2007 May; 9(11):2147-50. PubMed ID: 17465561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atom-economical chemoselective synthesis of 1,4-enynes from terminal alkenes and propargylic alcohols catalyzed by Cu(OTf)2.
    Huang GB; Wang X; Pan YM; Wang HS; Yao GY; Zhang Y
    J Org Chem; 2013 Mar; 78(6):2742-5. PubMed ID: 23379769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Palladium-catalyzed tandem reaction of yne-propargylic carbonates with boronic acids: a simple method for the synthesis of fused aromatic rings through allene-mediated electrocyclization.
    Wang F; Tong X; Cheng J; Zhang Z
    Chemistry; 2004 Oct; 10(21):5338-44. PubMed ID: 15378726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct amidation from alcohols and amines through a tandem oxidation process catalyzed by heterogeneous-polymer-incarcerated gold nanoparticles under aerobic conditions.
    Soulé JF; Miyamura H; Kobayashi S
    Chem Asian J; 2013 Nov; 8(11):2614-26. PubMed ID: 24166844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-N bond cleavage of allylic amines via hydrogen bond activation with alcohol solvents in Pd-catalyzed allylic alkylation of carbonyl compounds.
    Zhao X; Liu D; Guo H; Liu Y; Zhang W
    J Am Chem Soc; 2011 Dec; 133(48):19354-7. PubMed ID: 22050268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.