These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 24478160)
1. Large-scale identification of proteins involved in the development of a sexually dimorphic behavior. Zupanc GK; Ilies I; Sîrbulescu RF; Zupanc MM J Neurophysiol; 2014 Apr; 111(8):1646-54. PubMed ID: 24478160 [TBL] [Abstract][Full Text] [Related]
2. Development of a sexual dimorphism in a central pattern generator driving a rhythmic behavior: The role of glia-mediated potassium buffering in the pacemaker nucleus of the weakly electric fish Apteronotus leptorhynchus. Zupanc GKH Dev Neurobiol; 2020 Jan; 80(1-2):6-15. PubMed ID: 32090501 [TBL] [Abstract][Full Text] [Related]
3. Glia-mediated modulation of extracellular potassium concentration determines the sexually dimorphic output frequency of a model brainstem oscillator. Zupanc GKH; Amaro SM; Lehotzky D; Zupanc FB; Leung NY J Theor Biol; 2019 Jun; 471():117-124. PubMed ID: 30902592 [TBL] [Abstract][Full Text] [Related]
4. Dynamic Neuron-Glia Interactions in an Oscillatory Network Controlling Behavioral Plasticity in the Weakly Electric Fish, Zupanc GKH Front Physiol; 2017; 8():1087. PubMed ID: 29311998 [TBL] [Abstract][Full Text] [Related]
5. Ionic currents that contribute to a sexually dimorphic communication signal in weakly electric fish. Smith GT J Comp Physiol A; 1999 Oct; 185(4):379-87. PubMed ID: 10555272 [TBL] [Abstract][Full Text] [Related]
6. Genes linked to species diversity in a sexually dimorphic communication signal in electric fish. Smith GT; Proffitt MR; Smith AR; Rusch DB J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Jan; 204(1):93-112. PubMed ID: 29058069 [TBL] [Abstract][Full Text] [Related]
7. Diversity of sexual dimorphism in electrocommunication signals and its androgen regulation in a genus of electric fish, Apteronotus. Dunlap KD; Thomas P; Zakon HH J Comp Physiol A; 1998 Jul; 183(1):77-86. PubMed ID: 9691480 [TBL] [Abstract][Full Text] [Related]
8. Structure and sexual dimorphism of the electrocommunication signals of the weakly electric fish, Adontosternarchus devenanzii. Zhou M; Smith GT J Exp Biol; 2006 Dec; 209(Pt 23):4809-18. PubMed ID: 17114413 [TBL] [Abstract][Full Text] [Related]
9. Sex and species differences in neuromodulatory input to a premotor nucleus: a comparative study of substance P and communication behavior in weakly electric fish. Kolodziejski JA; Nelson BS; Smith GT J Neurobiol; 2005 Feb; 62(3):299-315. PubMed ID: 15515000 [TBL] [Abstract][Full Text] [Related]
10. Serotonin in a diencephalic nucleus controlling communication in an electric fish: sexual dimorphism and relationship to indicators of dominance. Telgkamp P; Combs N; Smith GT Dev Neurobiol; 2007 Feb; 67(3):339-54. PubMed ID: 17443792 [TBL] [Abstract][Full Text] [Related]
11. Hormonal and body size correlates of electrocommunication behavior during dyadic interactions in a weakly electric fish, Apteronotus leptorhynchus. Dunlap KD Horm Behav; 2002 Mar; 41(2):187-94. PubMed ID: 11855903 [TBL] [Abstract][Full Text] [Related]
12. The sexually dimorphic medial preoptic nucleus of quail: a key brain area mediating steroid action on male sexual behavior. Panzica GC; Viglietti-Panzica C; Balthazart J Front Neuroendocrinol; 1996 Jan; 17(1):51-125. PubMed ID: 8788569 [TBL] [Abstract][Full Text] [Related]
13. Species variation in steroid hormone-related gene expression contributes to species diversity in sexually dimorphic communication in electric fishes. Proffitt MR; Smith GT Horm Behav; 2024 Aug; 164():105576. PubMed ID: 38852479 [TBL] [Abstract][Full Text] [Related]
14. Electrocommunication signals in female brown ghost electric knifefish, Apteronotus leptorhynchus. Tallarovic SK; Zakon HH J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Sep; 188(8):649-57. PubMed ID: 12355241 [TBL] [Abstract][Full Text] [Related]
15. Modeling of sustained spontaneous network oscillations of a sexually dimorphic brainstem nucleus: the role of potassium equilibrium potential. Hartman D; Lehotzky D; Ilieş I; Levi M; Zupanc GKH J Comput Neurosci; 2021 Nov; 49(4):419-439. PubMed ID: 34032982 [TBL] [Abstract][Full Text] [Related]
16. Testosterone increases the number of substance P-like immunoreactive neurons in a specific sub-division of the lateral hypothalamus of the weakly electric, brown ghost knifefish, Apteronotus leptorhynchus. Dulka JG; Ebling SL Brain Res; 1999 Apr; 826(1):1-9. PubMed ID: 10216191 [TBL] [Abstract][Full Text] [Related]
17. Sex steroids and communication signals in electric fish: a tale of two species. Zakon HH; Dunlap KD Brain Behav Evol; 1999; 54(1):61-9. PubMed ID: 10516405 [TBL] [Abstract][Full Text] [Related]
18. Do sex differences in the brain explain sex differences in the hormonal induction of reproductive behavior? What 25 years of research on the Japanese quail tells us. Balthazart J; Tlemçani O; Ball GF Horm Behav; 1996 Dec; 30(4):627-61. PubMed ID: 9047287 [TBL] [Abstract][Full Text] [Related]
19. Gonadal hormone regulation of glial fibrillary acidic protein immunoreactivity in the medial amygdala subnuclei across the estrous cycle and in castrated and treated female rats. Martinez FG; Hermel EE; Xavier LL; Viola GG; Riboldi J; Rasia-Filho AA; Achaval M Brain Res; 2006 Sep; 1108(1):117-26. PubMed ID: 16842763 [TBL] [Abstract][Full Text] [Related]
20. Influence of gonadal steroids on the glial fibrillary acidic protein-immunoreactive astrocyte population in young rat hippocampus. Conejo NM; González-Pardo H; Cimadevilla JM; Argüelles JA; Díaz F; Vallejo-Seco G; Arias JL J Neurosci Res; 2005 Feb; 79(4):488-94. PubMed ID: 15619230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]