These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 24478234)
1. Laboratory algal bioassays using PAM fluorometry: effects of test conditions on the determination of herbicide and field sample toxicity. Sjollema SB; van Beusekom SA; van der Geest HG; Booij P; de Zwart D; Vethaak AD; Admiraal W Environ Toxicol Chem; 2014 May; 33(5):1017-22. PubMed ID: 24478234 [TBL] [Abstract][Full Text] [Related]
2. A fluorescence-based bioassay for aquatic macrophytes and its suitability for effect analysis of non-photosystem II inhibitors. Küster A; Pohl K; Altenburger R Environ Sci Pollut Res Int; 2007 Sep; 14(6):377-83. PubMed ID: 17993220 [TBL] [Abstract][Full Text] [Related]
3. Nationwide screening of surface water toxicity to algae. de Baat ML; Bas DA; van Beusekom SAM; Droge STJ; van der Meer F; de Vries M; Verdonschot PFM; Kraak MHS Sci Total Environ; 2018 Dec; 645():780-787. PubMed ID: 30031336 [TBL] [Abstract][Full Text] [Related]
4. The Combined Algae Test for the Evaluation of Mixture Toxicity in Environmental Samples. Glauch L; Escher BI Environ Toxicol Chem; 2020 Dec; 39(12):2496-2508. PubMed ID: 32926747 [TBL] [Abstract][Full Text] [Related]
5. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Kumar KS; Dahms HU; Lee JS; Kim HC; Lee WC; Shin KH Ecotoxicol Environ Saf; 2014 Jun; 104():51-71. PubMed ID: 24632123 [TBL] [Abstract][Full Text] [Related]
6. Community-level microalgal toxicity assessment by multiwavelength-excitation PAM fluorometry. Schmitt-Jansen M; Altenburger R Aquat Toxicol; 2008 Jan; 86(1):49-58. PubMed ID: 18036674 [TBL] [Abstract][Full Text] [Related]
7. Biomaterial culture conditions impacting the performance of a PAM fluorometry based aquatic phytotoxicity assay. Bengtson Nash SM; Quayle PA Biosens Bioelectron; 2007 Sep; 23(2):276-80. PubMed ID: 17521901 [TBL] [Abstract][Full Text] [Related]
8. Influence of increasing temperature and salinity on herbicide toxicity in estuarine phytoplankton. DeLorenzo ME; Danese LE; Baird TD Environ Toxicol; 2013 Jul; 28(7):359-71. PubMed ID: 21626650 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of copper toxicity using site specific algae and water chemistry: Field validation of laboratory bioassays. Fawaz EG; Salam DA; Kamareddine L Ecotoxicol Environ Saf; 2018 Jul; 155():59-65. PubMed ID: 29505982 [TBL] [Abstract][Full Text] [Related]
10. Application of a fluorometric microplate algal toxicity assay for riverine periphytic algal species. Nagai T; Taya K; Annoh H; Ishihara S Ecotoxicol Environ Saf; 2013 Aug; 94():37-44. PubMed ID: 23706602 [TBL] [Abstract][Full Text] [Related]
11. A radiative transfer modeling approach for accurate interpretation of PAM fluorometry experiments in suspended algal cultures. Murphy TE; Prufert-Bebout LE; Bebout BM Biotechnol Prog; 2016 Nov; 32(6):1601-1608. PubMed ID: 27801554 [TBL] [Abstract][Full Text] [Related]
12. Effect of algal surface area and species interactions in toxicity testing bioassays. Fawaz EG; Kamareddine LA; Salam DA Ecotoxicol Environ Saf; 2019 Jun; 174():584-591. PubMed ID: 30870659 [TBL] [Abstract][Full Text] [Related]
13. Toxicity estimates for diuron and atrazine for the tropical marine cnidarian Exaiptasia pallida and in-hospite Symbiodinium spp. using PAM chlorophyll-a fluorometry. Howe PL; Reichelt-Brushett AJ; Clark MW; Seery CR J Photochem Photobiol B; 2017 Jun; 171():125-132. PubMed ID: 28501690 [TBL] [Abstract][Full Text] [Related]
14. Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging. Schreiber U; Quayle P; Schmidt S; Escher BI; Mueller JF Biosens Bioelectron; 2007 May; 22(11):2554-63. PubMed ID: 17118646 [TBL] [Abstract][Full Text] [Related]
15. Development and validation of a new fluorescence-based bioassay for aquatic macrophyte species. Küster A; Altenburger R Chemosphere; 2007 Feb; 67(1):194-201. PubMed ID: 17083966 [TBL] [Abstract][Full Text] [Related]
16. Hazard and risk of herbicides for marine microalgae. Sjollema SB; Martínezgarcía G; van der Geest HG; Kraak MH; Booij P; Vethaak AD; Admiraal W Environ Pollut; 2014 Apr; 187():106-11. PubMed ID: 24463473 [TBL] [Abstract][Full Text] [Related]
17. Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: performance and methodological limits. Jakob T; Schreiber U; Kirchesch V; Langner U; Wilhelm C Photosynth Res; 2005; 83(3):343-61. PubMed ID: 16143924 [TBL] [Abstract][Full Text] [Related]
18. A rapid quantitative fluorescence-based bioassay to study allelochemical interactions from Alexandrium minutum. Long M; Tallec K; Soudant P; Lambert C; Le Grand F; Sarthou G; Jolley D; Hégaret H Environ Pollut; 2018 Nov; 242(Pt B):1598-1605. PubMed ID: 30072219 [TBL] [Abstract][Full Text] [Related]
19. PAM fluorometry in the determination of the sensitivity of Chlorella vulgaris, Selenastrum capricornutum, and Chlamydomonas reinhardtii to copper. Juneau P; El Berdey A; Popovic R Arch Environ Contam Toxicol; 2002 Feb; 42(2):155-64. PubMed ID: 11815806 [TBL] [Abstract][Full Text] [Related]
20. Herbicide toxicity on river biofilms assessed by pulse amplitude modulated (PAM) fluorometry. Kim Tiam S; Laviale M; Feurtet-Mazel A; Jan G; Gonzalez P; Mazzella N; Morin S Aquat Toxicol; 2015 Aug; 165():160-71. PubMed ID: 26046334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]