BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24478248)

  • 1. Silole-infiltrated photonic crystal films as effective fluorescence sensor for Fe3+ and Hg2+.
    Zhang Y; Li X; Gao L; Qiu J; Heng L; Tang BZ; Jiang L
    Chemphyschem; 2014 Feb; 15(3):507-13. PubMed ID: 24478248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly sensitive, selective and reusable mercury(II) ion sensor based on a ssDNA-functionalized photonic crystal film.
    Zhang Y; Gao L; Wen L; Heng L; Song Y
    Phys Chem Chem Phys; 2013 Jul; 15(28):11943-9. PubMed ID: 23771049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence 'on-off-on' chemosensor for sequential recognition of Fe(3+) and Hg(2+) in water based on tetraphenylethylene motif.
    Yan Y; Che Z; Yu X; Zhi X; Wang J; Xu H
    Bioorg Med Chem; 2013 Jan; 21(2):508-13. PubMed ID: 23218869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen-doped carbon quantum dots: facile synthesis and application as a "turn-off" fluorescent probe for detection of Hg2+ ions.
    Zhang R; Chen W
    Biosens Bioelectron; 2014 May; 55():83-90. PubMed ID: 24365697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II).
    Li M; Zhou X; Ding W; Guo S; Wu N
    Biosens Bioelectron; 2013 Mar; 41():889-93. PubMed ID: 23098856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sensitive strategy for Hg2+ detection in environmental water samples using long lifetime fluorescence quantum dots and gold nanoparticles.
    Huang D; Niu C; Ruan M; Wang X; Zeng G; Deng C
    Environ Sci Technol; 2013 May; 47(9):4392-8. PubMed ID: 23517334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly photoluminescent silicon nanocrystals for rapid, label-free and recyclable detection of mercuric ions.
    Zhang J; Yu SH
    Nanoscale; 2014 Apr; 6(8):4096-101. PubMed ID: 24604008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplex sensor for detection of different metal ions based on on-off of fluorescent gold nanoclusters.
    Zhao Q; Chen S; Zhang L; Huang H; Zeng Y; Liu F
    Anal Chim Acta; 2014 Dec; 852():236-43. PubMed ID: 25441903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenanthroimidazole-based thiobenzamide as an effective sensor for highly selective detection of mercury(II).
    Guo Y; Yan Y; Zhi X; Yang C; Xu H
    Bioorg Med Chem Lett; 2013 Jun; 23(11):3382-4. PubMed ID: 23591115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly selectively monitoring heavy and transition metal ions by a fluorescent sensor based on dipeptide.
    Neupane LN; Thirupathi P; Jang S; Jang MJ; Kim JH; Lee KH
    Talanta; 2011 Sep; 85(3):1566-74. PubMed ID: 21807223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convenient and highly effective fluorescence sensing for Hg2+ in aqueous solution and thin film.
    Liu Y; Yu M; Chen Y; Zhang N
    Bioorg Med Chem; 2009 Jun; 17(11):3887-91. PubMed ID: 19406646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive and selective chip-based fluorescent sensor for mercuric ion: development and comparison of turn-on and turn-off systems.
    Du J; Liu M; Lou X; Zhao T; Wang Z; Xue Y; Zhao J; Xu Y
    Anal Chem; 2012 Sep; 84(18):8060-6. PubMed ID: 22957843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer.
    Li M; Wang Q; Shi X; Hornak LA; Wu N
    Anal Chem; 2011 Sep; 83(18):7061-5. PubMed ID: 21842845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodamine-based probes for metal ion-induced chromo-/fluorogenic dual signaling and their selectivity towards Hg(II) ion.
    Bag B; Pal A
    Org Biomol Chem; 2011 Jun; 9(12):4467-80. PubMed ID: 21503366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NaYF4:Yb3+/Er3+ nanoparticle-based upconversion luminescence resonance energy transfer sensor for mercury(II) quantification.
    Li H; Wang L
    Analyst; 2013 Mar; 138(5):1589-95. PubMed ID: 23353928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly selective DNA-based sensor for lead(II) and mercury(II) ions.
    Liu CW; Huang CC; Chang HT
    Anal Chem; 2009 Mar; 81(6):2383-7. PubMed ID: 19219985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplified fluorescence detection of mercury(II) ions (Hg2+) using target-induced DNAzyme cascade with catalytic and molecular beacons.
    Qi L; Zhao Y; Yuan H; Bai K; Zhao Y; Chen F; Dong Y; Wu Y
    Analyst; 2012 Jun; 137(12):2799-805. PubMed ID: 22551984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A highly selective fluorescent sensor for Fe3+ based on covalently immobilized derivative of naphthalimide.
    Xu JH; Hou YM; Ma QJ; Wu XF; Wei XJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Aug; 112():116-24. PubMed ID: 23659959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Turn-on" chemiluminescence sensor for the highly selective and ultrasensitive detection of Hg2+ ions based on interstrand cooperative coordination and catalytic formation of gold nanoparticles.
    Cai S; Lao K; Lau C; Lu J
    Anal Chem; 2011 Dec; 83(24):9702-8. PubMed ID: 22049919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the counterion on light emission: a displacement strategy to change the emission behaviour from aggregation-caused quenching to aggregation-induced emission and to construct sensitive fluorescent sensors for Hg2+ detection.
    Zhao N; Lam JW; Sung HH; Su HM; Williams ID; Wong KS; Tang BZ
    Chemistry; 2014 Jan; 20(1):133-8. PubMed ID: 24375854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.