BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24478357)

  • 1. Activity of the principal cells of the olfactory bulb promotes a structural dynamic on the distal dendrites of immature adult-born granule cells via activation of NMDA receptors.
    Breton-Provencher V; Coté D; Saghatelyan A
    J Neurosci; 2014 Jan; 34(5):1748-59. PubMed ID: 24478357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early synapse formation in developing interneurons of the adult olfactory bulb.
    Panzanelli P; Bardy C; Nissant A; Pallotto M; Sassoè-Pognetto M; Lledo PM; Fritschy JM
    J Neurosci; 2009 Dec; 29(48):15039-52. PubMed ID: 19955355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early formation of GABAergic synapses governs the development of adult-born neurons in the olfactory bulb.
    Pallotto M; Nissant A; Fritschy JM; Rudolph U; Sassoè-Pognetto M; Panzanelli P; Lledo PM
    J Neurosci; 2012 Jun; 32(26):9103-15. PubMed ID: 22745509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of Granule Cell Interneurons by Two Divergent Local Circuit Pathways in the Rat Olfactory Bulb.
    Pressler RT; Strowbridge BW
    J Neurosci; 2020 Dec; 40(50):9701-9714. PubMed ID: 33234611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Specialization of Interneuron Dendrites: Identification of Action Potential Initiation Zone in Axonless Olfactory Bulb Granule Cells.
    Pressler RT; Strowbridge BW
    J Neurosci; 2019 Dec; 39(49):9674-9688. PubMed ID: 31662426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of GluN2A and GluN2B subunits in the formation of filopodia and secondary dendrites in cultured hippocampal neurons.
    Henle F; Dehmel M; Leemhuis J; Fischer C; Meyer DK
    Naunyn Schmiedebergs Arch Pharmacol; 2012 Feb; 385(2):171-80. PubMed ID: 22033802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragile X mental retardation protein regulates new neuron differentiation in the adult olfactory bulb.
    Scotto-Lomassese S; Nissant A; Mota T; Néant-Féry M; Oostra BA; Greer CA; Lledo PM; Trembleau A; Caillé I
    J Neurosci; 2011 Feb; 31(6):2205-15. PubMed ID: 21307257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of calretinin-expressing granule cells in olfactory bulb functions and odor behavior.
    Hardy D; Malvaut S; Breton-Provencher V; Saghatelyan A
    Sci Rep; 2018 Jun; 8(1):9385. PubMed ID: 29925844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells.
    Laaris N; Puche A; Ennis M
    J Neurophysiol; 2007 Jan; 97(1):296-306. PubMed ID: 17035366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction.
    Petreanu L; Alvarez-Buylla A
    J Neurosci; 2002 Jul; 22(14):6106-13. PubMed ID: 12122071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendritic sodium spikelets and low-threshold calcium spikes in turtle olfactory bulb granule cells.
    Pinato G; Midtgaard J
    J Neurophysiol; 2005 Mar; 93(3):1285-94. PubMed ID: 15483062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GluN2B-containing NMDA receptors promote wiring of adult-born neurons into olfactory bulb circuits.
    Kelsch W; Li Z; Eliava M; Goengrich C; Monyer H
    J Neurosci; 2012 Sep; 32(36):12603-11. PubMed ID: 22956849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperpolarization-Activated Currents and Subthreshold Resonance in Granule Cells of the Olfactory Bulb.
    Hu R; Ferguson KA; Whiteus CB; Meijer DH; Araneda RC
    eNeuro; 2016; 3(5):. PubMed ID: 27844056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors.
    Schoppa NE; Kinzie JM; Sahara Y; Segerson TP; Westbrook GL
    J Neurosci; 1998 Sep; 18(17):6790-802. PubMed ID: 9712650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task Learning Promotes Plasticity of Interneuron Connectivity Maps in the Olfactory Bulb.
    Huang L; Ung K; Garcia I; Quast KB; Cordiner K; Saggau P; Arenkiel BR
    J Neurosci; 2016 Aug; 36(34):8856-71. PubMed ID: 27559168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABA(B) receptors inhibit dendrodendritic transmission in the rat olfactory bulb.
    Isaacson JS; Vitten H
    J Neurosci; 2003 Mar; 23(6):2032-9. PubMed ID: 12657661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of N-methyl-D-aspartate glutamate receptor antagonists on oscillatory signal propagation in the guinea-pig accessory olfactory bulb slice: characterization by optical, field potential and patch clamp recordings.
    Sugai T; Onoda N
    Neuroscience; 2005; 135(2):583-94. PubMed ID: 16112479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current-source density analysis in the rat olfactory bulb: laminar distribution of kainate/AMPA- and NMDA-receptor-mediated currents.
    Aroniadou-Anderjaska V; Ennis M; Shipley MT
    J Neurophysiol; 1999 Jan; 81(1):15-28. PubMed ID: 9914263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraglomerular lateral inhibition promotes spike timing variability in principal neurons of the olfactory bulb.
    Najac M; Sanz Diez A; Kumar A; Benito N; Charpak S; De Saint Jan D
    J Neurosci; 2015 Mar; 35(10):4319-31. PubMed ID: 25762678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium influx through NMDA receptors directly evokes GABA release in olfactory bulb granule cells.
    Halabisky B; Friedman D; Radojicic M; Strowbridge BW
    J Neurosci; 2000 Jul; 20(13):5124-34. PubMed ID: 10864969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.