BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24478368)

  • 1. A spiking neural integrator model of the adaptive control of action by the medial prefrontal cortex.
    Bekolay T; Laubach M; Eliasmith C
    J Neurosci; 2014 Jan; 34(5):1892-902. PubMed ID: 24478368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective delay activity in the medial prefrontal cortex of the rat: contribution of sensorimotor information and contingency.
    Cowen SL; McNaughton BL
    J Neurophysiol; 2007 Jul; 98(1):303-16. PubMed ID: 17507507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural Representation of Motor Output, Context and Behavioral Adaptation in Rat Medial Prefrontal Cortex During Learned Behavior.
    de Haan R; Lim J; van der Burg SA; Pieneman AW; Nigade V; Mansvelder HD; de Kock CPJ
    Front Neural Circuits; 2018; 12():75. PubMed ID: 30327591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mediodorsal Thalamic Neurons Mirror the Activity of Medial Prefrontal Neurons Responding to Movement and Reinforcement during a Dynamic DNMTP Task.
    Miller RLA; Francoeur MJ; Gibson BM; Mair RG
    eNeuro; 2017; 4(5):. PubMed ID: 29034318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of neural responses in the primary auditory cortex, amygdala, and medial prefrontal cortex of cats during auditory discrimination tasks.
    Zhao Z; Ma L; Wang Y; Qin L
    J Neurophysiol; 2019 Mar; 121(3):785-798. PubMed ID: 30649979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mistakes were made: neural mechanisms for the adaptive control of action initiation by the medial prefrontal cortex.
    Laubach M; Caetano MS; Narayanan NS
    J Physiol Paris; 2015; 109(1-3):104-17. PubMed ID: 25636373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ramping single unit activity in the medial prefrontal cortex and ventral striatum reflects the onset of waiting but not imminent impulsive actions.
    Donnelly NA; Paulsen O; Robbins TW; Dalley JW
    Eur J Neurosci; 2015 Jun; 41(12):1524-37. PubMed ID: 25892211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prefrontal Theta Oscillations Promote Selective Encoding of Behaviorally Relevant Events.
    Jarovi J; Volle J; Yu X; Guan L; Takehara-Nishiuchi K
    eNeuro; 2018; 5(6):. PubMed ID: 30693310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurons in rat orbitofrontal cortex and medial prefrontal cortex exhibit distinct responses in reward and strategy-update in a risk-based decision-making task.
    Hong DD; Huang WQ; Ji AA; Yang SS; Xu H; Sun KY; Cao A; Gao WJ; Zhou N; Yu P
    Metab Brain Dis; 2019 Apr; 34(2):417-429. PubMed ID: 30535618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning in neural networks by reinforcement of irregular spiking.
    Xie X; Seung HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041909. PubMed ID: 15169045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Timing-dependent regulation of evoked spiking in nucleus accumbens neurons by integration of limbic and prefrontal cortical inputs.
    McGinty VB; Grace AA
    J Neurophysiol; 2009 Apr; 101(4):1823-35. PubMed ID: 19193767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prefrontal Neural Ensembles Develop Selective Code for Stimulus Associations within Minutes of Novel Experiences.
    Takehara-Nishiuchi K; Morrissey MD; Pilkiw M
    J Neurosci; 2020 Oct; 40(43):8355-8366. PubMed ID: 32989098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning-related facilitation of rhinal interactions by medial prefrontal inputs.
    Paz R; Bauer EP; Paré D
    J Neurosci; 2007 Jun; 27(24):6542-51. PubMed ID: 17567815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medial prefrontal cell activity signaling prediction errors of action values.
    Matsumoto M; Matsumoto K; Abe H; Tanaka K
    Nat Neurosci; 2007 May; 10(5):647-56. PubMed ID: 17450137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distributed representations of temporal stimulus associations across regular-firing and fast-spiking neurons in rat medial prefrontal cortex.
    Xing B; Morrissey MD; Takehara-Nishiuchi K
    J Neurophysiol; 2020 Jan; 123(1):439-450. PubMed ID: 31851558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional identification of biological neural networks using reservoir adaptation for point processes.
    Gürel T; Rotter S; Egert U
    J Comput Neurosci; 2010 Aug; 29(1-2):279-299. PubMed ID: 19639401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delay activity in rodent frontal cortex during a simple reaction time task.
    Narayanan NS; Laubach M
    J Neurophysiol; 2009 Jun; 101(6):2859-71. PubMed ID: 19339463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine bioavailability in the mPFC modulates operant learning performance in rats: an experimental study with a computational interpretation.
    Rapanelli M; Frick LR; Miguelez Fernández AM; Zanutto BS
    Behav Brain Res; 2015 Mar; 280():92-100. PubMed ID: 25435314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal correlates of post-error slowing in the rat dorsomedial prefrontal cortex.
    Narayanan NS; Laubach M
    J Neurophysiol; 2008 Jul; 100(1):520-5. PubMed ID: 18480374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A large-scale neurocomputational model of task-oriented behavior selection and working memory in prefrontal cortex.
    Chadderdon GL; Sporns O
    J Cogn Neurosci; 2006 Feb; 18(2):242-57. PubMed ID: 16494684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.