These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24478936)

  • 1. MuB gives a new twist to target DNA selection.
    Dramićanin M; Ramón-Maiques S
    Mob Genet Elements; 2013 Sep; 3(5):e27515. PubMed ID: 24478936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MuB is an AAA+ ATPase that forms helical filaments to control target selection for DNA transposition.
    Mizuno N; Dramićanin M; Mizuuchi M; Adam J; Wang Y; Han YW; Yang W; Steven AC; Mizuuchi K; Ramón-Maiques S
    Proc Natl Acad Sci U S A; 2013 Jul; 110(27):E2441-50. PubMed ID: 23776210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The N-terminal domain of MuB protein has striking structural similarity to DNA-binding domains and mediates MuB filament-filament interactions.
    Dramićanin M; López-Méndez B; Boskovic J; Campos-Olivas R; Ramón-Maiques S
    J Struct Biol; 2015 Aug; 191(2):100-11. PubMed ID: 26169224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidating the Architectural dynamics of MuB filaments in bacteriophage Mu DNA transposition.
    Zhao X; Gao Y; Gong Q; Zhang K; Li S
    Nat Commun; 2024 Jul; 15(1):6445. PubMed ID: 39085263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phage Mu transposition immunity: protein pattern formation along DNA by a diffusion-ratchet mechanism.
    Han YW; Mizuuchi K
    Mol Cell; 2010 Jul; 39(1):48-58. PubMed ID: 20603074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting the roles of MuB in Mu transposition: ATP regulation of DNA binding is not essential for target delivery.
    Schweidenback CT; Baker TA
    Proc Natl Acad Sci U S A; 2008 Aug; 105(34):12101-7. PubMed ID: 18719126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ATP-ADP switch in MuB controls progression of the Mu transposition pathway.
    Yamauchi M; Baker TA
    EMBO J; 1998 Sep; 17(18):5509-18. PubMed ID: 9736628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Congruence of in vivo and in vitro insertion patterns in hot E. coli gene targets of transposable element Mu: opposing roles of MuB in target capture and integration.
    Ge J; Harshey RM
    J Mol Biol; 2008 Jul; 380(4):598-607. PubMed ID: 18556020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MuB protein allosterically activates strand transfer by the transposase of phage Mu.
    Baker TA; Mizuuchi M; Mizuuchi K
    Cell; 1991 Jun; 65(6):1003-13. PubMed ID: 1646076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target immunity during Mu DNA transposition. Transpososome assembly and DNA looping enhance MuA-mediated disassembly of the MuB target complex.
    Greene EC; Mizuuchi K
    Mol Cell; 2002 Dec; 10(6):1367-78. PubMed ID: 12504012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of a protein polymer: the assembly and disassembly pathways of the MuB transposition target complex.
    Greene EC; Mizuuchi K
    EMBO J; 2002 Mar; 21(6):1477-86. PubMed ID: 11889053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA transposition target immunity and the determinants of the MuB distribution patterns on DNA.
    Tan X; Mizuuchi M; Mizuuchi K
    Proc Natl Acad Sci U S A; 2007 Aug; 104(35):13925-9. PubMed ID: 17709741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep sequencing reveals new roles for MuB in transposition immunity and target-capture, and redefines the insular Ter region of
    Walker DM; Harshey RM
    Mob DNA; 2020; 11():26. PubMed ID: 32670425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunity of replicating Mu to self-integration: a novel mechanism employing MuB protein.
    Ge J; Lou Z; Harshey RM
    Mob DNA; 2010 Feb; 1(1):8. PubMed ID: 20226074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway.
    Levchenko I; Yamauchi M; Baker TA
    Genes Dev; 1997 Jun; 11(12):1561-72. PubMed ID: 9203582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of phage Mu DNA transposition by whole-genome Escherichia coli tiling arrays reveals a complex relationship to distribution of target selection protein B, transcription and chromosome architectural elements.
    Ge J; Lou Z; Cui H; Shang L; Harshey RM
    J Biosci; 2011 Sep; 36(4):587-601. PubMed ID: 21857106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualizing the assembly and disassembly mechanisms of the MuB transposition targeting complex.
    Greene EC; Mizuuchi K
    J Biol Chem; 2004 Apr; 279(16):16736-43. PubMed ID: 14871890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of phage Mu transpososomes: cooperative transitions assisted by protein and DNA scaffolds.
    Mizuuchi M; Baker TA; Mizuuchi K
    Cell; 1995 Nov; 83(3):375-85. PubMed ID: 8521467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamic Mu transpososome: MuB activation prevents disintegration.
    Lemberg KM; Schweidenback CT; Baker TA
    J Mol Biol; 2007 Dec; 374(5):1158-71. PubMed ID: 17988683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational isomerization in phage Mu transpososome assembly: effects of the transpositional enhancer and of MuB.
    Mizuuchi M; Mizuuchi K
    EMBO J; 2001 Dec; 20(23):6927-35. PubMed ID: 11726528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.