These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 24479128)
1. Probing hypoxia-induced staurosporine resistance in prostate cancer cells with a microfluidic culture system. Khanal G; Hiemstra S; Pappas D Analyst; 2014 Jul; 139(13):3274-80. PubMed ID: 24479128 [TBL] [Abstract][Full Text] [Related]
2. Observation of reversible, rapid changes in drug susceptibility of hypoxic tumor cells in a microfluidic device. Germain T; Ansari M; Pappas D Anal Chim Acta; 2016 Sep; 936():179-84. PubMed ID: 27566353 [TBL] [Abstract][Full Text] [Related]
3. A microfluidic localized, multiple cell culture array using vacuum actuated cell seeding: integrated anticancer drug testing. Gao Y; Li P; Pappas D Biomed Microdevices; 2013 Dec; 15(6):907-15. PubMed ID: 23813077 [TBL] [Abstract][Full Text] [Related]
4. Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Ramteke A; Ting H; Agarwal C; Mateen S; Somasagara R; Hussain A; Graner M; Frederick B; Agarwal R; Deep G Mol Carcinog; 2015 Jul; 54(7):554-65. PubMed ID: 24347249 [TBL] [Abstract][Full Text] [Related]
5. A programmable microfluidic cell array for combinatorial drug screening. Kim J; Taylor D; Agrawal N; Wang H; Kim H; Han A; Rege K; Jayaraman A Lab Chip; 2012 Apr; 12(10):1813-22. PubMed ID: 22456798 [TBL] [Abstract][Full Text] [Related]
6. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip. Lei KF; Wu MH; Hsu CW; Chen YD Biosens Bioelectron; 2014 Jan; 51():16-21. PubMed ID: 23920091 [TBL] [Abstract][Full Text] [Related]
7. Viability analysis and apoptosis induction of breast cancer cells in a microfluidic device: effect of cytostatic drugs. Komen J; Wolbers F; Franke HR; Andersson H; Vermes I; van den Berg A Biomed Microdevices; 2008 Oct; 10(5):727-37. PubMed ID: 18523888 [TBL] [Abstract][Full Text] [Related]
8. Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform. Liu W; Xu J; Li T; Zhao L; Ma C; Shen S; Wang J Anal Chem; 2015 Oct; 87(19):9752-60. PubMed ID: 26337449 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic Biopsy Trapping Device for the Real-Time Monitoring of Tumor Microenvironment. Holton AB; Sinatra FL; Kreahling J; Conway AJ; Landis DA; Altiok S PLoS One; 2017; 12(1):e0169797. PubMed ID: 28085924 [TBL] [Abstract][Full Text] [Related]
10. Integrated microfluidic devices for combinatorial cell-based assays. Yu ZT; Kamei K; Takahashi H; Shu CJ; Wang X; He GW; Silverman R; Radu CG; Witte ON; Lee KB; Tseng HR Biomed Microdevices; 2009 Jun; 11(3):547-55. PubMed ID: 19130244 [TBL] [Abstract][Full Text] [Related]
11. RNA interference targeting sensitive-to-apoptosis gene potentiates doxorubicin- and staurosporine-induced apoptosis of PC3 cells. Yang ES; Huh YJ; Park JW Anticancer Res; 2013 Mar; 33(3):847-55. PubMed ID: 23482753 [TBL] [Abstract][Full Text] [Related]
12. Docetaxel maintains its cytotoxic activity under hypoxic conditions in prostate cancer cells. Forde JC; Perry AS; Brennan K; Martin LM; Lawler MP; Lynch TH; Hollywood D; Marignol L Urol Oncol; 2012; 30(6):912-9. PubMed ID: 21176881 [TBL] [Abstract][Full Text] [Related]
14. Dynamic regulation of Rad51 by E2F1 and p53 in prostate cancer cells upon drug-induced DNA damage under hypoxia. Wu M; Wang X; McGregor N; Pienta KJ; Zhang J Mol Pharmacol; 2014 Jun; 85(6):866-76. PubMed ID: 24627085 [TBL] [Abstract][Full Text] [Related]
15. Apoptosis induction by a novel anti-prostate cancer compound, BMD188 (a fatty acid-containing hydroxamic acid), requires the mitochondrial respiratory chain. Joshi B; Li L; Taffe BG; Zhu Z; Wahl S; Tian H; Ben-Josef E; Taylor JD; Porter AT; Tang DG Cancer Res; 1999 Sep; 59(17):4343-55. PubMed ID: 10485482 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic chip integrated with flexible PDMS-based electrochemical cytosensor for dynamic analysis of drug-induced apoptosis on HeLa cells. Cao JT; Zhu YD; Rana RK; Zhu JJ Biosens Bioelectron; 2014 Jan; 51():97-102. PubMed ID: 23942358 [TBL] [Abstract][Full Text] [Related]
17. A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions. Barmaki S; Jokinen V; Obermaier D; Blokhina D; Korhonen M; Ras RHA; Vuola J; Franssila S; Kankuri E Acta Biomater; 2018 Jun; 73():167-179. PubMed ID: 29649636 [TBL] [Abstract][Full Text] [Related]
18. Multi-channel 3-D cell culture device integrated on a silicon chip for anticancer drug sensitivity test. Torisawa YS; Shiku H; Yasukawa T; Nishizawa M; Matsue T Biomaterials; 2005 May; 26(14):2165-72. PubMed ID: 15576192 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of BCL-X(L) underlies the molecular basis for resistance to staurosporine-induced apoptosis in PC-3 cells. Li X; Marani M; Mannucci R; Kinsey B; Andriani F; Nicoletti I; Denner L; Marcelli M Cancer Res; 2001 Feb; 61(4):1699-706. PubMed ID: 11245486 [TBL] [Abstract][Full Text] [Related]
20. A microfluidic device for continuous cancer cell culture and passage with hydrodynamic forces. Liu L; Loutherback K; Liao D; Yeater D; Lambert G; Estévez-Torres A; Sturm JC; Getzenberg RH; Austin RH Lab Chip; 2010 Jul; 10(14):1807-13. PubMed ID: 20424729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]