BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24479265)

  • 21. An international collaboration studying the physiological and anatomical cerebral effects of carbon dioxide during head-down tilt bed rest: the SPACECOT study.
    Marshall-Goebel K; Mulder E; Donoviel D; Strangman G; Suarez JI; Venkatasubba Rao C; Frings-Meuthen P; Limper U; Rittweger J; Bershad EM
    J Appl Physiol (1985); 2017 Jun; 122(6):1398-1405. PubMed ID: 28235859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diurnal pattern of intraocular pressure is affected by microgravity when measured in space with the pressure phosphene tonometer (PPT).
    Chung KY; Woo SJ; Yi S; Choi GH; Ahn CH; Hur GC; Lim JG; Kim TW
    J Glaucoma; 2011 Oct; 20(8):488-91. PubMed ID: 21968970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lower-body negative pressure decreases noninvasively measured intracranial pressure and internal jugular vein cross-sectional area during head-down tilt.
    Watkins W; Hargens AR; Seidl S; Clary EM; Macias BR
    J Appl Physiol (1985); 2017 Jul; 123(1):260-266. PubMed ID: 28495841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracranial pressure and glaucoma.
    Berdahl JP; Allingham RR
    Curr Opin Ophthalmol; 2010 Mar; 21(2):106-11. PubMed ID: 20040876
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The odyssey of the ocular and cerebrospinal fluids during a mission to Mars: the "ocular glymphatic system" under pressure.
    Wostyn P; Gibson CR; Mader TH
    Eye (Lond); 2022 Apr; 36(4):686-691. PubMed ID: 34373611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in Ocular Perfusion and Pressure Changes in Gravitational Alteration Contribute to Spaceflight-Associated Neuro-Ocular Syndrome.
    Binneboessel S; Gerdes N; Baertschi M; Kaya S; Geerling G; Kelm M; Jung C
    Arterioscler Thromb Vasc Biol; 2024 Jul; 44(7):1716-1718. PubMed ID: 38721708
    [No Abstract]   [Full Text] [Related]  

  • 27. Characterization of the mechanical behavior of the optic nerve sheath and its role in spaceflight-induced ophthalmic changes.
    Raykin J; Forte TE; Wang R; Feola A; Samuels BC; Myers JG; Mulugeta L; Nelson ES; Gleason RL; Ethier CR
    Biomech Model Mechanobiol; 2017 Feb; 16(1):33-43. PubMed ID: 27236645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lower body negative pressure reduces optic nerve sheath diameter during head-down tilt.
    Marshall-Goebel K; Terlević R; Gerlach DA; Kuehn S; Mulder E; Rittweger J
    J Appl Physiol (1985); 2017 Nov; 123(5):1139-1144. PubMed ID: 28818998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cerebral hemodynamics during microgravity.
    Gotoh TM; Tanaka K; Fujiki N; Matsuda T; Gao S; Morita H
    Biol Sci Space; 2003 Oct; 17(3):204-5. PubMed ID: 14676376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Association of Space Flight With Problems of the Brain and Eyes.
    Shinojima A; Kakeya I; Tada S
    JAMA Ophthalmol; 2018 Sep; 136(9):1075-1076. PubMed ID: 29978215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual changes after space flight: is it really caused by increased intracranial tension? A systematic review.
    Elwy R; Soliman MA; Hasanain AA; Ezzat AA; Elbaroody M; Alsawy MF; El Refaee E
    J Neurosurg Sci; 2020 Oct; 64(5):468-479. PubMed ID: 32347675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Space flight-associated neuro-ocular syndrome (SANS).
    Lee AG; Mader TH; Gibson CR; Brunstetter TJ; Tarver WJ
    Eye (Lond); 2018 Jul; 32(7):1164-1167. PubMed ID: 29527011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The translaminar pressure gradient in sustained zero gravity, idiopathic intracranial hypertension, and glaucoma.
    Berdahl JP; Yu DY; Morgan WH
    Med Hypotheses; 2012 Dec; 79(6):719-24. PubMed ID: 22981592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intracranial and Intraocular Pressure at the Lamina Cribrosa: Gradient Effects.
    Jóhannesson G; Eklund A; Lindén C
    Curr Neurol Neurosci Rep; 2018 Apr; 18(5):25. PubMed ID: 29651628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intraocular pressure and retinal vascular changes during transient exposure to microgravity.
    Mader TH; Gibson CR; Caputo M; Hunter N; Taylor G; Charles J; Meehan RT
    Am J Ophthalmol; 1993 Mar; 115(3):347-50. PubMed ID: 8442494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased cerebral blood volume pulsatility during head-down tilt with elevated carbon dioxide: the SPACECOT Study.
    Strangman GE; Zhang Q; Marshall-Goebel K; Mulder E; Stevens B; Clark JB; Bershad EM
    J Appl Physiol (1985); 2017 Jul; 123(1):62-70. PubMed ID: 28360122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-tonometry under microgravity conditions.
    Draeger J; Schwartz R; Groenhoff S; Stern C
    Clin Investig; 1993 Sep; 71(9):700-3. PubMed ID: 8241719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Space adaptation syndrome is caused by elevated intracranial pressure.
    Jennings T
    Med Hypotheses; 1990 Aug; 32(4):289-91. PubMed ID: 2233420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-tonometry under microgravity conditions.
    Draeger J; Schwartz R; Groenhoff S; Stern C
    Aviat Space Environ Med; 1995 Jun; 66(6):568-70. PubMed ID: 7646408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The aetiology of spaceflight-associated neuro-ocular syndrome might be explained by a neural mechanism regulating intraocular pressure.
    Jaki Mekjavic P; Amoaku W; Mlinar T; Mekjavic IB
    J Physiol; 2020 Apr; 598(8):1431-1432. PubMed ID: 32118293
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.