BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24479322)

  • 1. [Defects in antioxidant defence enhance glyoxal toxicity in the yeast Saccharomyces cerevisiae].
    Semchyshyn HM
    Ukr Biokhim Zh (1999); 2013; 85(5):50-60. PubMed ID: 24479322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Defects in TOR regulatory complexes retard aging and carbonyl/oxidative stress development in yeast Saccharomyces cerevisiae].
    Homza BV; Vasyl'kovs'ka RA; Semchyshyn HM
    Ukr Biochem J; 2014; 86(1):85-92. PubMed ID: 24834721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress during aging of the yeast in a stationary culture and its attenuation by antioxidants.
    Owsiak A; Bartosz G; Bilinski T
    Cell Biol Int; 2010 Jul; 34(7):731-6. PubMed ID: 20337598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glyoxal and methylglyoxal: autoxidation from dihydroxyacetone and polyphenol cytoprotective antioxidant mechanisms.
    Lip H; Yang K; MacAllister SL; O'Brien PJ
    Chem Biol Interact; 2013 Feb; 202(1-3):267-74. PubMed ID: 23220003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible role of superoxide dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions.
    Lushchak V; Semchyshyn H; Mandryk S; Lushchak O
    Arch Biochem Biophys; 2005 Sep; 441(1):35-40. PubMed ID: 16084798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of Yap1p and Skn7p-mediated oxidative stress response in the defence of Saccharomyces cerevisiae against singlet oxygen.
    Brombacher K; Fischer BB; Rüfenacht K; Eggen RI
    Yeast; 2006 Jul; 23(10):741-50. PubMed ID: 16862604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress.
    Menezes RA; Amaral C; Batista-Nascimento L; Santos C; Ferreira RB; Devaux F; Eleutherio EC; Rodrigues-Pousada C
    Biochem J; 2008 Sep; 414(2):301-11. PubMed ID: 18439143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ascorbate and thiol antioxidants abolish sensitivity of yeast Saccharomyces cerevisiae to disulfiram.
    Kwolek-Mirek M; Zadrag-Tecza R; Bartosz G
    Cell Biol Toxicol; 2012 Feb; 28(1):1-9. PubMed ID: 21866320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains.
    Bleoanca I; Silva AR; Pimentel C; Rodrigues-Pousada C; Menezes Rde A
    J Biosci Bioeng; 2013 Dec; 116(6):697-705. PubMed ID: 23838012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fructose compared with glucose is more a potent glycoxidation agent in vitro, but not under carbohydrate-induced stress in vivo: potential role of antioxidant and antiglycation enzymes.
    Semchyshyn HM; Miedzobrodzki J; Bayliak MM; Lozinska LM; Homza BV
    Carbohydr Res; 2014 Jan; 384():61-9. PubMed ID: 24361593
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Susarla G; Kataria P; Kundu A; D'Silva P
    Elife; 2023 Aug; 12():. PubMed ID: 37548361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytoprotection by almond skin extracts or catechins of hepatocyte cytotoxicity induced by hydroperoxide (oxidative stress model) versus glyoxal or methylglyoxal (carbonylation model).
    Dong Q; Banaich MS; O'Brien PJ
    Chem Biol Interact; 2010 Apr; 185(2):101-9. PubMed ID: 20211157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial Responses to Glyoxal and Methylglyoxal: Reactive Electrophilic Species.
    Lee C; Park C
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28106725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective effects of ferulic acid and related polyphenols against glyoxal- or methylglyoxal-induced cytotoxicity and oxidative stress in isolated rat hepatocytes.
    Maruf AA; Lip H; Wong H; O'Brien PJ
    Chem Biol Interact; 2015 Jun; 234():96-104. PubMed ID: 25446858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fructose and glucose differentially affect aging and carbonyl/oxidative stress parameters in Saccharomyces cerevisiae cells.
    Semchyshyn HM; Lozinska LM; Miedzobrodzki J; Lushchak VI
    Carbohydr Res; 2011 May; 346(7):933-8. PubMed ID: 21459368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.
    Ribeiro TP; Fernandes C; Melo KV; Ferreira SS; Lessa JA; Franco RW; Schenk G; Pereira MD; Horn A
    Free Radic Biol Med; 2015 Mar; 80():67-76. PubMed ID: 25511255
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Kong Y; Wang Q; Cao F; Zhang X; Fang Z; Shi P; Wang H; Shen Y; Huang Z
    Free Radic Res; 2020 Apr; 54(4):231-243. PubMed ID: 32295440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth temperature downshift induces antioxidant response in Saccharomyces cerevisiae.
    Zhang L; Onda K; Imai R; Fukuda R; Horiuchi H; Ohta A
    Biochem Biophys Res Commun; 2003 Jul; 307(2):308-14. PubMed ID: 12859956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae.
    Semchyshyn HM; Abrat OB; Miedzobrodzki J; Inoue Y; Lushchak VI
    Redox Rep; 2011; 16(1):15-23. PubMed ID: 21605494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of antioxidant-deficient yeast to hypochlorite and chlorite.
    Kwolek-Mirek M; Bartosz G; Spickett CM
    Yeast; 2011 Aug; 28(8):595-609. PubMed ID: 21761455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.