BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24479686)

  • 1. Influence of glycation of plasma proteins in diabetes on the binding interaction with polyphenols.
    Xu W; Chen L; Shao R
    Curr Drug Metab; 2014 Jan; 15(1):116-9. PubMed ID: 24479686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycation of human serum albumin in diabetes: impacts on the structure and function.
    Cao H; Chen T; Shi Y
    Curr Med Chem; 2015; 22(1):4-13. PubMed ID: 25245514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycation of human serum albumin alters its binding efficacy towards the dietary polyphenols: a comparative approach.
    Singha Roy A; Ghosh P; Dasgupta S
    J Biomol Struct Dyn; 2016 Sep; 34(9):1911-8. PubMed ID: 26443197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review: Glycation of human serum albumin.
    Anguizola J; Matsuda R; Barnaby OS; Hoy KS; Wa C; DeBolt E; Koke M; Hage DS
    Clin Chim Acta; 2013 Oct; 425():64-76. PubMed ID: 23891854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperglycemia induced structural and functional changes in human serum albumin of diabetic patients: a physico-chemical study.
    Neelofar K; Arif Z; Alam K; Ahmad J
    Mol Biosyst; 2016 Jul; 12(8):2481-9. PubMed ID: 27226040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of tolbutamide to glycated human serum albumin.
    Joseph KS; Anguizola J; Hage DS
    J Pharm Biomed Anal; 2011 Jan; 54(2):426-32. PubMed ID: 20880646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic analysis of human serum albumin interactions with glucose: insights into the diabetic range of glucose concentration.
    Mohamadi-Nejad A; Moosavi-Movahedi AA; Hakimelahi GH; Sheibani N
    Int J Biochem Cell Biol; 2002 Sep; 34(9):1115-24. PubMed ID: 12009306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protective ability and binding affinity of captopril towards serum albumin in an in vitro glycation model of diabetes mellitus.
    Mariee AD; Al-Shabanah O
    J Pharm Biomed Anal; 2006 May; 41(2):571-5. PubMed ID: 16469467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatographic studies of changes in binding of sulfonylurea drugs to human serum albumin due to glycation and fatty acids.
    Basiaga SB; Hage DS
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Nov; 878(30):3193-7. PubMed ID: 20974553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of modification sites formed on human serum albumin at various stages of glycation.
    Barnaby OS; Cerny RL; Clarke W; Hage DS
    Clin Chim Acta; 2011 Jan; 412(3-4):277-85. PubMed ID: 21034726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycation of human serum albumin impairs binding to the glucagon-like peptide-1 analogue liraglutide.
    Gajahi Soudahome A; Catan A; Giraud P; Assouan Kouao S; Guerin-Dubourg A; Debussche X; Le Moullec N; Bourdon E; Bravo SB; Paradela-Dobarro B; Álvarez E; Meilhac O; Rondeau P; Couprie J
    J Biol Chem; 2018 Mar; 293(13):4778-4791. PubMed ID: 29414771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic studies of the effects of glycation of human serum albumin on L-Trp binding.
    Barzegar A; Moosavi-Movahedi AA; Sattarahmady N; Hosseinpour-Faizi MA; Aminbakhsh M; Ahmad F; Saboury AA; Ganjali MR; Norouzi P
    Protein Pept Lett; 2007; 14(1):13-8. PubMed ID: 17266645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatographic analysis of acetohexamide binding to glycated human serum albumin.
    Joseph KS; Anguizola J; Jackson AJ; Hage DS
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Oct; 878(28):2775-81. PubMed ID: 20829128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatographic analysis of the effects of fatty acids and glycation on binding by probes for Sudlow sites I and II to human serum albumin.
    Anguizola J; Debolt E; Suresh D; Hage DS
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 May; 1021():175-181. PubMed ID: 26468085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of the molten globule-like state during prolonged glycation of human serum albumin.
    Sattarahmady N; Moosavi-Movahedi AA; Ahmad F; Hakimelahi GH; Habibi-Rezaei M; Saboury AA; Sheibani N
    Biochim Biophys Acta; 2007 Jun; 1770(6):933-42. PubMed ID: 17368729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-enzymatic glycation and protein recognition.
    Bitensky MW; Kowluru A; Kowluru RA
    Prog Clin Biol Res; 1989; 304():185-203. PubMed ID: 2675028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncovalent interaction of dietary polyphenols with common human plasma proteins.
    Xiao J; Zhao Y; Wang H; Yuan Y; Yang F; Zhang C; Yamamoto K
    J Agric Food Chem; 2011 Oct; 59(19):10747-54. PubMed ID: 21863815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glyburide inhibits non-enzymatic glycation of HSA: An approach for the management of AGEs associated diabetic complications.
    Qais FA; Sarwar T; Ahmad I; Khan RA; Shahzad SA; Husain FM
    Int J Biol Macromol; 2021 Feb; 169():143-152. PubMed ID: 33338529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of non-enzymatic post-translation modifications on the ability of human serum albumin to bind iron. Implications for non-transferrin-bound iron speciation.
    Silva AM; Hider RC
    Biochim Biophys Acta; 2009 Oct; 1794(10):1449-58. PubMed ID: 19505594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Pharmacologic importance of glycation of plasma proteins].
    Beránek M; Palicka V
    Ceska Slov Farm; 1998 Sep; 47(5):211-4. PubMed ID: 9818475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.