These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24479730)

  • 1. Manipulating nanoscale contact electrification by an applied electric field.
    Zhou YS; Wang S; Yang Y; Zhu G; Niu S; Lin ZH; Liu Y; Wang ZL
    Nano Lett; 2014 Mar; 14(3):1567-72. PubMed ID: 24479730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale charge transfer and diffusion at the MoS
    Xu R; Ye S; Xu K; Lei L; Hussain S; Zheng Z; Pang F; Xing S; Liu X; Ji W; Cheng Z
    Nanotechnology; 2018 Aug; 29(35):355701. PubMed ID: 29873636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling Surface Charge Generated by Contact Electrification: Strategies and Applications.
    Chen L; Shi Q; Sun Y; Nguyen T; Lee C; Soh S
    Adv Mater; 2018 Nov; 30(47):e1802405. PubMed ID: 30129287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocontact electrification: patterned surface charges affecting adhesion, transfer, and printing.
    Cole JJ; Barry CR; Knuesel RJ; Wang X; Jacobs HO
    Langmuir; 2011 Jun; 27(11):7321-9. PubMed ID: 21526803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the kinetics of contact electrification with patterned surfaces.
    Thomas SW; Vella SJ; Dickey MD; Kaufman GK; Whitesides GM
    J Am Chem Soc; 2009 Jul; 131(25):8746-7. PubMed ID: 19499916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron Transfer in Nanoscale Contact Electrification: Effect of Temperature in the Metal-Dielectric Case.
    Lin S; Xu L; Xu C; Chen X; Wang AC; Zhang B; Lin P; Yang Y; Zhao H; Wang ZL
    Adv Mater; 2019 Apr; 31(17):e1808197. PubMed ID: 30844100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ quantitative study of nanoscale triboelectrification and patterning.
    Zhou YS; Liu Y; Zhu G; Lin ZH; Pan C; Jing Q; Wang ZL
    Nano Lett; 2013 Jun; 13(6):2771-6. PubMed ID: 23627668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing Contact Electrification: A Cohesively Sticky Problem.
    Sherrell PC; Sutka A; Shepelin NA; Lapcinskis L; Verners O; Germane L; Timusk M; Fenati RA; Malnieks K; Ellis AV
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44935-44947. PubMed ID: 34498850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact-Electrification between Two Identical Materials: Curvature Effect.
    Xu C; Zhang B; Wang AC; Zou H; Liu G; Ding W; Wu C; Ma M; Feng P; Lin Z; Wang ZL
    ACS Nano; 2019 Feb; 13(2):2034-2041. PubMed ID: 30707552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron Transfer in Nanoscale Contact Electrification: Photon Excitation Effect.
    Lin S; Xu L; Zhu L; Chen X; Wang ZL
    Adv Mater; 2019 Jul; 31(27):e1901418. PubMed ID: 31095783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can Static Electricity on a Conductor Drive a Redox Reaction: Contact Electrification of Au by Polydimethylsiloxane, Charge Inversion in Water, and Redox Reaction.
    Yun C; Lee SH; Ryu J; Park K; Jang JW; Kwak J; Hwang S
    J Am Chem Soc; 2018 Nov; 140(44):14687-14695. PubMed ID: 30371072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct probing of contact electrification by using optical second harmonic generation technique.
    Chen X; Taguchi D; Manaka T; Iwamoto M; Wang ZL
    Sci Rep; 2015 Aug; 5():13019. PubMed ID: 26272162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding contact electrification at liquid-solid interfaces from surface electronic structure.
    Sun M; Lu Q; Wang ZL; Huang B
    Nat Commun; 2021 Mar; 12(1):1752. PubMed ID: 33741951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets.
    McCarty LS; Whitesides GM
    Angew Chem Int Ed Engl; 2008; 47(12):2188-207. PubMed ID: 18270989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.
    Wang ZL
    ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Charging Events in Contact-Separation Electrification.
    Musa UG; Cezan SD; Baytekin B; Baytekin HT
    Sci Rep; 2018 Feb; 8(1):2472. PubMed ID: 29410440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectric Manipulated Charge Dynamics in Contact Electrification.
    Shi K; Chai B; Zou H; Min D; Li S; Jiang P; Huang X
    Research (Wash D C); 2022; 2022():9862980. PubMed ID: 35198985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bias-induced forces in conducting atomic force microscopy and contact charging of organic monolayers.
    Cui XD; Zarate X; Tomfohr J; Primak A; Moore AL; Moore TA; Gust D; Harris G; Sankey OF; Lindsay SM
    Ultramicroscopy; 2002 Jul; 92(2):67-76. PubMed ID: 12138944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact de-electrification of electrostatically charged polymers.
    Soh S; Kwok SW; Liu H; Whitesides GM
    J Am Chem Soc; 2012 Dec; 134(49):20151-9. PubMed ID: 23153329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing Contact-Electrification-Induced Electron and Ion Transfers at a Liquid-Solid Interface.
    Nie J; Ren Z; Xu L; Lin S; Zhan F; Chen X; Wang ZL
    Adv Mater; 2020 Jan; 32(2):e1905696. PubMed ID: 31782572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.