BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24479949)

  • 1. Influence of neighboring groups on the thermodynamics of hydrophobic binding: an added complex facet to the hydrophobic effect.
    Nasief NN; Hangauer D
    J Med Chem; 2014 Mar; 57(6):2315-33. PubMed ID: 24479949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water makes the difference: rearrangement of water solvation layer triggers non-additivity of functional group contributions in protein-ligand binding.
    Biela A; Betz M; Heine A; Klebe G
    ChemMedChem; 2012 Aug; 7(8):1423-34. PubMed ID: 22733601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and thermodynamic study on aldose reductase: nitro-substituted inhibitors with strong enthalpic binding contribution.
    Steuber H; Heine A; Klebe G
    J Mol Biol; 2007 May; 368(3):618-38. PubMed ID: 17368668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Think twice: understanding the high potency of bis(phenyl)methane inhibitors of thrombin.
    Baum B; Muley L; Heine A; Smolinski M; Hangauer D; Klebe G
    J Mol Biol; 2009 Aug; 391(3):552-64. PubMed ID: 19520086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Van der Waals interactions dominate ligand-protein association in a protein binding site occluded from solvent water.
    Barratt E; Bingham RJ; Warner DJ; Laughton CA; Phillips SE; Homans SW
    J Am Chem Soc; 2005 Aug; 127(33):11827-34. PubMed ID: 16104761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factorising ligand affinity: a combined thermodynamic and crystallographic study of trypsin and thrombin inhibition.
    Dullweber F; Stubbs MT; Musil D; Stürzebecher J; Klebe G
    J Mol Biol; 2001 Oct; 313(3):593-614. PubMed ID: 11676542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PDBcal: a comprehensive dataset for receptor-ligand interactions with three-dimensional structures and binding thermodynamics from isothermal titration calorimetry.
    Li L; Dantzer JJ; Nowacki J; O'Callaghan BJ; Meroueh SO
    Chem Biol Drug Des; 2008 Jun; 71(6):529-32. PubMed ID: 18482338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of fragment binding.
    Ferenczy GG; Keserű GM
    J Chem Inf Model; 2012 Apr; 52(4):1039-45. PubMed ID: 22458364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand binding stepwise disrupts water network in thrombin: enthalpic and entropic changes reveal classical hydrophobic effect.
    Biela A; Sielaff F; Terwesten F; Heine A; Steinmetzer T; Klebe G
    J Med Chem; 2012 Jul; 55(13):6094-110. PubMed ID: 22612268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-additivity of functional group contributions in protein-ligand binding: a comprehensive study by crystallography and isothermal titration calorimetry.
    Baum B; Muley L; Smolinski M; Heine A; Hangauer D; Klebe G
    J Mol Biol; 2010 Apr; 397(4):1042-54. PubMed ID: 20156458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isothermal titration calorimetry for studying protein-ligand interactions.
    Damian L
    Methods Mol Biol; 2013; 1008():103-18. PubMed ID: 23729250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Congeneric but still distinct: how closely related trypsin ligands exhibit different thermodynamic and structural properties.
    Brandt T; Holzmann N; Muley L; Khayat M; Wegscheid-Gerlach C; Baum B; Heine A; Hangauer D; Klebe G
    J Mol Biol; 2011 Feb; 405(5):1170-87. PubMed ID: 21111747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic analysis of binding between mouse major urinary protein-I and the pheromone 2-sec-butyl-4,5-dihydrothiazole.
    Sharrow SD; Novotny MV; Stone MJ
    Biochemistry; 2003 May; 42(20):6302-9. PubMed ID: 12755635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations.
    Verkhivker GM
    Pac Symp Biocomput; 1996; ():638-52. PubMed ID: 9390264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An approach to rational ligand-design based on a thermodynamic analysis.
    Ui M; Tsumoto K
    Recent Pat Biotechnol; 2010 Nov; 4(3):183-8. PubMed ID: 21171955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Displacement of disordered water molecules from hydrophobic pocket creates enthalpic signature: binding of phosphonamidate to the S₁'-pocket of thermolysin.
    Englert L; Biela A; Zayed M; Heine A; Hangauer D; Klebe G
    Biochim Biophys Acta; 2010 Nov; 1800(11):1192-202. PubMed ID: 20600625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thermodynamic signature of ligand binding to histone deacetylase-like amidohydrolases is most sensitive to the flexibility in the L2-loop lining the active site pocket.
    Meyners C; Krämer A; Yildiz Ö; Meyer-Almes FJ
    Biochim Biophys Acta Gen Subj; 2017 Jul; 1861(7):1855-1863. PubMed ID: 28389333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial protein cavities as specific ligand-binding templates: characterization of an engineered heterocyclic cation-binding site that preserves the evolved specificity of the parent protein.
    Musah RA; Jensen GM; Bunte SW; Rosenfeld RJ; Goodin DB
    J Mol Biol; 2002 Jan; 315(4):845-57. PubMed ID: 11812152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. β-Lactoglobulin interactions with local anaesthetic drugs – Crystallographic and calorimetric studies.
    Loch JI; Bonarek P; Polit A; Jabłoński M; Czub M; Ye X; Lewiński K
    Int J Biol Macromol; 2015 Sep; 80():87-94. PubMed ID: 26092174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of the trifluoroacetyl group in the thermodynamics of antigen-antibody binding.
    Oda M; Saito M; Tsumuraya T; Fujii I
    J Mol Recognit; 2010; 23(3):263-70. PubMed ID: 19544483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.