BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 24479953)

  • 1. Virtual atmospheric mercury emission network in China.
    Liang S; Zhang C; Wang Y; Xu M; Liu W
    Environ Sci Technol; 2014; 48(5):2807-15. PubMed ID: 24479953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfers of embodied PM
    Yang X; Zhang W; Fan J; Yu J; Zhao H
    Environ Pollut; 2018 Apr; 235():381-393. PubMed ID: 29306806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trade-Induced Atmospheric Mercury Deposition over China and Implications for Demand-Side Controls.
    Chen L; Meng J; Liang S; Zhang H; Zhang W; Liu M; Tong Y; Wang H; Wang W; Wang X; Shu J
    Environ Sci Technol; 2018 Feb; 52(4):2036-2045. PubMed ID: 29328652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007.
    Tian H; Wang Y; Xue Z; Qu Y; Chai F; Hao J
    Sci Total Environ; 2011 Jul; 409(16):3078-81. PubMed ID: 21621816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Estimate the mercury emissions from non-coal sources in China].
    Wang SX; Liu M; Jiang JK; Hao JM; Wu Y; Streets DG
    Huan Jing Ke Xue; 2006 Dec; 27(12):2401-6. PubMed ID: 17304831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual flows of aquatic heavy metal emissions and associated risk in China.
    Zhang W; Liu M; Hubacek K; Feng K; Wu W; Liu Y; Jiang H; Bi J; Wang J
    J Environ Manage; 2019 Nov; 249():109400. PubMed ID: 31445371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Health risk assessment of China's main air pollutants.
    Sun J; Zhou T
    BMC Public Health; 2017 Feb; 17(1):212. PubMed ID: 28219424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating mercury emissions from a zinc smelter in relation to China's mercury control policies.
    Wang SX; Song JX; Li GH; Wu Y; Zhang L; Wan Q; Streets DG; Chin CK; Hao JM
    Environ Pollut; 2010 Oct; 158(10):3347-53. PubMed ID: 20716469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural decomposition analysis of embodied carbon in trade in the middle reaches of the Yangtze River.
    Chen Z; Ni W; Xia L; Zhong Z
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):816-832. PubMed ID: 30415365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the spatiotemporal dynamics of industrial sulfur dioxide emissions in China based on DMSP-OLS nighttime stable light data.
    Yue Y; Wang Z; Tian L; Zhao J; Lai Z; Ji G; Xia H
    PLoS One; 2020; 15(9):e0238696. PubMed ID: 32911520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal and spatial distribution of atmospheric antimony emission inventories from coal combustion in China.
    Tian HZ; Zhao D; He MC; Wang Y; Cheng K
    Environ Pollut; 2011 Jun; 159(6):1613-9. PubMed ID: 21421279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The atmospheric lead emission, deposition, and environmental inequality driven by interprovincial trade in China.
    Wang ZX; Lian LL; Li JX; He J; Ma HB; Chen LL; Mao XX; Gao H; Ma JM; Huang T
    Sci Total Environ; 2021 Nov; 797():149113. PubMed ID: 34303976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Socioeconomic drivers of mercury emissions in China from 1992 to 2007.
    Liang S; Xu M; Liu Z; Suh S; Zhang T
    Environ Sci Technol; 2013 Apr; 47(7):3234-40. PubMed ID: 23473539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of High-Resolution Atmospheric Mercury Emission Inventories for Chinese Cement Plants Based on the Mass Balance Method.
    Cai X; Cai B; Zhang H; Chen L; Zheng C; Tong P; Lin H; Zhang Q; Liu M; Tong Y; Wang X
    Environ Sci Technol; 2020 Nov; 54(21):13399-13408. PubMed ID: 33081465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forecasting the energy demand and CO
    Li B; Zhou W; Xian Y; Guan X
    Environ Sci Pollut Res Int; 2024 Jan; 31(5):7283-7297. PubMed ID: 38155310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of mercury emission inventory from coal combustion in China].
    Jiang JK; Hao JM; Wu Y; Streets DG; Duan L; Tian HZ
    Huan Jing Ke Xue; 2005 Mar; 26(2):34-9. PubMed ID: 16004296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emission trends of industrial VOCs in China since the clean air action and future reduction perspectives.
    Simayi M; Shi Y; Xi Z; Ren J; Hini G; Xie S
    Sci Total Environ; 2022 Jun; 826():153994. PubMed ID: 35227718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions.
    Muntean M; Janssens-Maenhout G; Song S; Selin NE; Olivier JG; Guizzardi D; Maas R; Dentener F
    Sci Total Environ; 2014 Oct; 494-495():337-50. PubMed ID: 25068706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disparities in socio-economic drivers behind China's provincial energy-related mercury emission changes.
    Guo Y; Zhang B; Chen B; Yang Q; Li J
    J Environ Manage; 2019 Dec; 251():109613. PubMed ID: 31561143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. China's cement demand and CO
    Wei J; Cen K; Geng Y
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6409-6423. PubMed ID: 30623329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.