BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

496 related articles for article (PubMed ID: 24480015)

  • 1. Metal-enhanced fluorescence-based core-shell Ag@SiO₂ nanoflares for affinity biosensing via target-induced structure switching of aptamer.
    Lu L; Qian Y; Wang L; Ma K; Zhang Y
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1944-50. PubMed ID: 24480015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fluorescent aptasensor for amplified label-free detection of adenosine triphosphate based on core-shell Ag@SiO2 nanoparticles.
    Song Q; Peng M; Wang L; He D; Ouyang J
    Biosens Bioelectron; 2016 Mar; 77():237-41. PubMed ID: 26409024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluorescent aptasensor for H5N1 influenza virus detection based-on the core-shell nanoparticles metal-enhanced fluorescence (MEF).
    Pang Y; Rong Z; Wang J; Xiao R; Wang S
    Biosens Bioelectron; 2015 Apr; 66():527-32. PubMed ID: 25506900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen-Doped Graphene Quantum Dots@SiO2 Nanoparticles as Electrochemiluminescence and Fluorescence Signal Indicators for Magnetically Controlled Aptasensor with Dual Detection Channels.
    Wang C; Qian J; Wang K; Hua M; Liu Q; Hao N; You T; Huang X
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26865-73. PubMed ID: 26524349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced fluorescence from fluorophore-assembled monolayers by using Ag@SiO2 nanoparticles.
    Zhang R; Wang Z; Song C; Yang J; Li J; Sadaf A; Cui Y
    Chemphyschem; 2011 Apr; 12(5):992-8. PubMed ID: 21442706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering.
    Li M; Zhang J; Suri S; Sooter LJ; Ma D; Wu N
    Anal Chem; 2012 Mar; 84(6):2837-42. PubMed ID: 22380526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-enhanced fluorescence of nano-core-shell structure used for sensitive detection of prion protein with a dual-aptamer strategy.
    Hu PP; Zheng LL; Zhan L; Li JY; Zhen SJ; Liu H; Luo LF; Xiao GF; Huang CZ
    Anal Chim Acta; 2013 Jul; 787():239-45. PubMed ID: 23830445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel aptasensor based on silver nanoparticle enhanced fluorescence.
    Wang Y; Li Z; Li H; Vuki M; Xu D; Chen HY
    Biosens Bioelectron; 2012 Feb; 32(1):76-81. PubMed ID: 22209330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-state label-free integrated aptasensor based on graphene-mesoporous silica-gold nanoparticle hybrids and silver microspheres.
    Guo S; Du Y; Yang X; Dong S; Wang E
    Anal Chem; 2011 Oct; 83(20):8035-40. PubMed ID: 21910432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ag@SiO2-entrapped hydrogel microarray: a new platform for a metal-enhanced fluorescence-based protein assay.
    Jang E; Kim M; Koh WG
    Analyst; 2015 May; 140(10):3375-83. PubMed ID: 25837891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding-induced fluorescence turn-on assay using aptamer-functionalized silver nanocluster DNA probes.
    Li J; Zhong X; Zhang H; Le XC; Zhu JJ
    Anal Chem; 2012 Jun; 84(12):5170-4. PubMed ID: 22607314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silica nanoparticles based label-free aptamer hybridization for ATP detection using hoechst33258 as the signal reporter.
    Cai L; Chen ZZ; Dong XM; Tang HW; Pang DW
    Biosens Bioelectron; 2011 Nov; 29(1):46-52. PubMed ID: 21903375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive and universal fluorescent aptasensor for the detection of biomolecules (ATP, adenosine and thrombin) based on DNA/Ag nanoclusters fluorescence light-up system.
    Zhu Y; Hu XC; Shi S; Gao RR; Huang HL; Zhu YY; Lv XY; Yao TM
    Biosens Bioelectron; 2016 May; 79():205-12. PubMed ID: 26706942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal enhanced fluorescence solution-based sensing platform 2: fluorescent core-shell Ag@SiO2 nanoballs.
    Aslan K; Wu M; Lakowicz JR; Geddes CD
    J Fluoresc; 2007 Mar; 17(2):127-31. PubMed ID: 17279332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent pH sensor based on Ag@SiO2 core-shell nanoparticle.
    Bai Z; Chen R; Si P; Huang Y; Sun H; Kim DH
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5856-60. PubMed ID: 23716502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The aptamer DNA-templated fluorescence silver nanoclusters: ATP detection and preliminary mechanism investigation.
    Xu J; Wei C
    Biosens Bioelectron; 2017 Jan; 87():422-427. PubMed ID: 27589406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-enhanced fluorescent dye-doped silica nanoparticles and magnetic separation: A sensitive platform for one-step fluorescence detection of prostate specific antigen.
    Xu DD; Deng YL; Li CY; Lin Y; Tang HW
    Biosens Bioelectron; 2017 Jan; 87():881-887. PubMed ID: 27662582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing sensitivity and selectivity of long-period grating sensors using structure-switching aptamers bound to gold-doped macroporous silica coatings.
    Carrasquilla C; Xiao Y; Xu CQ; Li Y; Brennan JD
    Anal Chem; 2011 Oct; 83(20):7984-91. PubMed ID: 21951178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of a new core-shell Ag@SiO2 nanocomposite and its application for fluorescence enhancement.
    Guo L; Guan A; Lin X; Zhang C; Chen G
    Talanta; 2010 Oct; 82(5):1696-700. PubMed ID: 20875565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer.
    Chen JW; Liu XP; Feng KJ; Liang Y; Jiang JH; Shen GL; Yu RQ
    Biosens Bioelectron; 2008 Sep; 24(1):66-71. PubMed ID: 18436440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.