BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24480164)

  • 1. Assessing the variability in respiratory acoustic thoracic imaging (RATHI).
    Charleston-Villalobos S; Torres-Jiménez A; González-Camarena R; Chi-Lem G; Aljama-Corrales T
    Comput Biol Med; 2014 Feb; 45():58-66. PubMed ID: 24480164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory acoustic thoracic imaging (RATHI): assessing intrasubject variability.
    Torres-Jimenez A; Charleston-Villalobos S; Gonzalez-Camarena R; Chi-Lem G; Aljama-Corrales T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4793-6. PubMed ID: 19163788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetry in lung sound intensities detected by respiratory acoustic thoracic imaging (RATHI) and clinical pulmonary auscultation.
    Torres-Jimenez A; Charleston-Villalobos S; Gonzalez-Camarena R; Chi-Lem G; Aljama-Corrales T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4797-800. PubMed ID: 19163789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory acoustic thoracic imaging (RATHI): assessing deterministic interpolation techniques.
    Charleston-Villalobos S; Cortés-Rubiano S; González-Camarena R; Chi-Lem G; Aljama-Corrales T
    Med Biol Eng Comput; 2004 Sep; 42(5):618-26. PubMed ID: 15503962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new versatile PC-based lung sound analyzer with automatic crackle analysis (HeLSA); repeatability of spectral parameters and sound amplitude in healthy subjects.
    Sovijärvi AR; Helistö P; Malmberg LP; Kallio K; Paajanen E; Saarinen A; Lipponen P; Haltsonen S; Pekkanen L; Piirilä P; Näveri L; Katila T
    Technol Health Care; 1998 Jun; 6(1):11-22. PubMed ID: 9754680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracheal sound spectra depend on body height.
    Sanchez I; Pasterkamp H
    Am Rev Respir Dis; 1993 Oct; 148(4 Pt 1):1083-7. PubMed ID: 8214929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-scale segmentation of respiratory sounds.
    Ademovic E; Pesquet JC; Charbonneau G
    Technol Health Care; 1998 Jun; 6(1):53-63. PubMed ID: 9754684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging the thoracic distribution of normal breath sounds.
    González-Camarena R; Charleston-Villalobos S; Angeles-Olguín A; Aljama-Corrales T
    Methods Inf Med; 2010; 49(5):443-7. PubMed ID: 20526523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of time-frequency representation techniques for thoracic sounds analysis.
    Reyes BA; Charleston-Villalobos S; González-Camarena R; Aljama-Corrales T
    Comput Methods Programs Biomed; 2014 May; 114(3):276-90. PubMed ID: 24680639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of Respiratory Rates Using the Built-in Microphone of a Smartphone or Headset.
    Nam Y; Reyes BA; Chon KH
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1493-1501. PubMed ID: 26415194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of respiratory sounds at the external ear.
    Pressler GA; Mansfield JP; Pasterkamp H; Wodicka GR
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2089-96. PubMed ID: 15605855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibration response imaging: evaluation of rater agreement in healthy subjects and subjects with pneumonia.
    Bartziokas K; Daenas C; Preau S; Zygoulis P; Triantaris A; Kerenidi T; Makris D; Gourgoulianis KI; Daniil Z
    BMC Med Imaging; 2010 Mar; 10():6. PubMed ID: 20222975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repeatability of measurements of normal lung sounds.
    Mahagnah M; Gavriely N
    Am J Respir Crit Care Med; 1994 Feb; 149(2 Pt 1):477-81. PubMed ID: 8306049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of respiratory sounds based on wavelet packet decomposition and learning vector quantization.
    Pesu L; Helistö P; Ademovic E; Pesquet JC; Saarinen A; Sovijärvi AR
    Technol Health Care; 1998 Jun; 6(1):65-74. PubMed ID: 9754685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computerized Respiratory Sounds Are a Reliable Marker in Subjects With COPD.
    Jácome C; Marques A
    Respir Care; 2015 Sep; 60(9):1264-75. PubMed ID: 25969514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibration response imaging technology in healthy subjects.
    Yigla M; Gat M; Meyer JJ; Friedman PJ; Maher TM; Madison JM
    AJR Am J Roentgenol; 2008 Sep; 191(3):845-52. PubMed ID: 18716118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency spectra of normal expiratory nasal sound.
    Seren E
    Am J Rhinol; 2005; 19(3):257-61. PubMed ID: 16011131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Qualitative and quantitative evaluation of heart sound reduction from lung sound recordings.
    Gnitecki J; Hossain I; Pasterkamp H; Moussavi Z
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1788-92. PubMed ID: 16235665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic thoracic images for transmitted glottal sounds.
    Charleston-Villalobos S; González-Camarena R; Chi-Lem G; Aljama-Corrales T
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3481-4. PubMed ID: 18002746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The characteristics of the sounds of normal human forced expiration].
    Kilin AS; Korenbaum VI; Kulakov IuV; Tagil'tsev AA
    Fiziol Cheloveka; 1999; 25(3):128-31. PubMed ID: 10822635
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.