These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 24480176)

  • 1. Detection and classification of retinal lesions for grading of diabetic retinopathy.
    Usman Akram M; Khalid S; Tariq A; Khan SA; Azam F
    Comput Biol Med; 2014 Feb; 45():161-71. PubMed ID: 24480176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy.
    Akram MU; Tariq A; Anjum MA; Javed MY
    Appl Opt; 2012 Jul; 51(20):4858-66. PubMed ID: 22781265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated detection of exudates and macula for grading of diabetic macular edema.
    Akram MU; Tariq A; Khan SA; Javed MY
    Comput Methods Programs Biomed; 2014 Apr; 114(2):141-52. PubMed ID: 24548898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of neovascularization in retinal images using multivariate m-Mediods based classifier.
    Usman Akram M; Khalid S; Tariq A; Younus Javed M
    Comput Med Imaging Graph; 2013; 37(5-6):346-57. PubMed ID: 23916066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images.
    Köse C; Sevik U; Ikibaş C; Erdöl H
    Comput Methods Programs Biomed; 2012 Aug; 107(2):274-93. PubMed ID: 21757250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DREAM: diabetic retinopathy analysis using machine learning.
    Roychowdhury S; Koozekanani DD; Parhi KK
    IEEE J Biomed Health Inform; 2014 Sep; 18(5):1717-28. PubMed ID: 25192577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Points of interest and visual dictionaries for automatic retinal lesion detection.
    Rocha A; Carvalho T; Jelinek HF; Goldenstein S; Wainer J
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2244-53. PubMed ID: 22665502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-proliferative diabetic retinopathy symptoms detection and classification using neural network.
    Al-Jarrah MA; Shatnawi H
    J Med Eng Technol; 2017 Aug; 41(6):498-505. PubMed ID: 28786703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated lesion detectors in retinal fundus images.
    Figueiredo IN; Kumar S; Oliveira CM; Ramos JD; Engquist B
    Comput Biol Med; 2015 Nov; 66():47-65. PubMed ID: 26378502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer classification of nonproliferative diabetic retinopathy.
    Lee SC; Lee ET; Wang Y; Klein R; Kingsley RM; Warn A
    Arch Ophthalmol; 2005 Jun; 123(6):759-64. PubMed ID: 15955976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated detection of exudates for diabetic retinopathy screening.
    Fleming AD; Philip S; Goatman KA; Williams GJ; Olson JA; Sharp PF
    Phys Med Biol; 2007 Dec; 52(24):7385-96. PubMed ID: 18065845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy.
    Akram UM; Khan SA
    J Med Syst; 2012 Oct; 36(5):3151-62. PubMed ID: 22090037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple hybrid method for fine microaneurysm detection from non-dilated diabetic retinopathy retinal images.
    Sopharak A; Uyyanonvara B; Barman S
    Comput Med Imaging Graph; 2013; 37(5-6):394-402. PubMed ID: 23777979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal image analysis based on mixture models to detect hard exudates.
    Sánchez CI; García M; Mayo A; López MI; Hornero R
    Med Image Anal; 2009 Aug; 13(4):650-8. PubMed ID: 19539518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of hard exudates in retinal images using a radial basis function classifier.
    García M; Sánchez CI; Poza J; López MI; Hornero R
    Ann Biomed Eng; 2009 Jul; 37(7):1448-63. PubMed ID: 19430906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method to assist in the diagnosis of early diabetic retinopathy: Image processing applied to detection of microaneurysms in fundus images.
    Rosas-Romero R; Martínez-Carballido J; Hernández-Capistrán J; Uribe-Valencia LJ
    Comput Med Imaging Graph; 2015 Sep; 44():41-53. PubMed ID: 26245720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer-assisted diagnostic system for grading diabetic retinopathy.
    Dupas B; Walter T; Erginay A; Ordonez R; Deb-Joardar N; Gain P; Klein JC; Massin P
    Diabetes Metab; 2010 Jun; 36(3):213-20. PubMed ID: 20219404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Detection of Retinal Lesions for Screening of Diabetic Retinopathy.
    Kar SS; Maity SP
    IEEE Trans Biomed Eng; 2018 Mar; 65(3):608-618. PubMed ID: 28541892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Hard Exudates Using Evolutionary Feature Selection in Retinal Fundus Images.
    Kadan AB; Subbian PS
    J Med Syst; 2019 May; 43(7):209. PubMed ID: 31144041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated detection and grading of diabetic maculopathy in digital retinal images.
    Tariq A; Akram MU; Shaukat A; Khan SA
    J Digit Imaging; 2013 Aug; 26(4):803-12. PubMed ID: 23325123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.