These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 24480253)

  • 1. Computational study of the elastic properties of Rheum rhabarbarum tissues via surrogate models of tissue geometry.
    Faisal TR; Hristozov N; Western TL; Rey AD; Pasini D
    J Struct Biol; 2014 Mar; 185(3):285-94. PubMed ID: 24480253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental determination of Philodendron melinonii and Arabidopsis thaliana tissue microstructure and geometric modeling via finite-edge centroidal Voronoi tessellation.
    Faisal TR; Hristozov N; Rey AD; Western TL; Pasini D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031921. PubMed ID: 23030958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The twist-to-bend compliance of the Rheum rhabarbarum petiole: integrated computations and experiments.
    Faisal TR; Hristozov N; Western TL; Rey A; Pasini D
    Comput Methods Biomech Biomed Engin; 2017 Mar; 20(4):343-354. PubMed ID: 27626758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties.
    Grimal Q; Raum K; Gerisch A; Laugier P
    Biomech Model Mechanobiol; 2011 Dec; 10(6):925-37. PubMed ID: 21267625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical evaluation of bulk material properties of dental composites using two-phase finite element models.
    Li J; Li H; Fok AS; Watts DC
    Dent Mater; 2012 Sep; 28(9):996-1003. PubMed ID: 22727356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A representative volume element based micromechanical analysis of a Bi-layered Ganoid Fish scale.
    Nelms M; Hodo W; Rajendran AM
    J Mech Behav Biomed Mater; 2017 May; 69():395-403. PubMed ID: 28189933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A polynomial hyperelastic model for the mixture of fat and glandular tissue in female breast.
    Calvo-Gallego JL; Martínez-Reina J; Domínguez J
    Int J Numer Method Biomed Eng; 2015 Sep; 31(9):e02723. PubMed ID: 25950862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired lightweight cellular materials--understanding effects of natural variation on mechanical properties.
    Cadman J; Chang CC; Chen J; Chen Y; Zhou S; Li W; Li Q
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3146-52. PubMed ID: 23706194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale modeling of skeletal muscle tissues based on analytical and numerical homogenization.
    Spyrou LA; Brisard S; Danas K
    J Mech Behav Biomed Mater; 2019 Apr; 92():97-117. PubMed ID: 30677705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of the physical properties of nanocomposites by finite-element discretization and Monte Carlo simulation.
    Spanos P; Elsbernd P; Ward B; Koenck T
    Philos Trans A Math Phys Eng Sci; 2013 Jun; 371(1993):20120494. PubMed ID: 23690646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress concentration around an atelectatic region: a finite element model.
    Makiyama AM; Gibson LJ; Harris RS; Venegas JG
    Respir Physiol Neurobiol; 2014 Sep; 201():101-10. PubMed ID: 25048678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the geometry of the RVE for cancellous bone by using the effective complex shear modulus.
    Klinge S
    Biomech Model Mechanobiol; 2013 Apr; 12(2):401-12. PubMed ID: 22699522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A large-strain finite element formulation for biological tissues with application to mitral valve leaflet tissue mechanics.
    Weinberg EJ; Kaazempur-Mofrad MR
    J Biomech; 2006; 39(8):1557-61. PubMed ID: 16038913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirements for comparing the performance of finite element models of biological structures.
    Dumont ER; Grosse IR; Slater GJ
    J Theor Biol; 2009 Jan; 256(1):96-103. PubMed ID: 18834892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-scale simulation of plant stem reinforcement by brachysclereids: A case study in apple fruit peduncles.
    Horbens M; Branke D; Gärtner R; Voigt A; Stenger F; Neinhuis C
    J Struct Biol; 2015 Oct; 192(1):116-26. PubMed ID: 26278981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic and magnetostatic properties of random materials.
    Karimi P; Zhang X; Yan S; Ostoja-Starzewski M; Jin JM
    Phys Rev E; 2019 Feb; 99(2-1):022120. PubMed ID: 30934271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of bone geometry on effective properties of bone scaffolds.
    McIntosh L; Cordell JM; Wagoner Johnson AJ
    Acta Biomater; 2009 Feb; 5(2):680-92. PubMed ID: 18955024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.