BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 24480299)

  • 1. New insights into molecular mechanism(s) underlying the presynaptic action of nitric oxide on GABA release.
    Tarasenko A; Krupko O; Himmelreich N
    Biochim Biophys Acta; 2014 Jun; 1840(6):1923-32. PubMed ID: 24480299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of nitric oxide donor SNAP on GABA release from rat brain nerve terminals.
    Tarasenko AS
    Ukr Biochem J; 2016; 88(5):82-9. PubMed ID: 29235815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. alpha-Latrotoxin affects mitochondrial potential and synaptic vesicle proton gradient of nerve terminals.
    Tarasenko AS; Storchak LG; Himmelreich NH
    Neurochem Int; 2008 Feb; 52(3):392-400. PubMed ID: 17728017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenylarsine oxide is able to dissipate synaptic vesicle acidic pool.
    Tarasenko AS; Kostrzhevska OG; Storchak LG; Linetska MV; Borisova TA; Himmelreich NH
    Neurochem Int; 2005 Jun; 46(7):541-50. PubMed ID: 15843048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effectiveness of extracellular lactate/pyruvate for sustaining synaptic vesicle proton gradient generation and vesicular accumulation of GABA.
    Tarasenko AS; Linetska MV; Storchak LG; Himmelreich NH
    J Neurochem; 2006 Nov; 99(3):787-96. PubMed ID: 16836653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New effects of GABAB receptor allosteric modulator rac-BHFF on ambient GABA, uptake/release, Em and synaptic vesicle acidification in nerve terminals.
    Pozdnyakova N; Dudarenko M; Borisova T
    Neuroscience; 2015 Sep; 304():60-70. PubMed ID: 26197223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. THE EFFECT OF NITRIC OXIDE ON SYNAPTIC VESICLE PROTON GRADIENT AND MITOCHONDRIAL POTENTIAL OF BRAIN NERVE TERMINALS.
    Tarasenko AS
    Ukr Biochem J; 2015; 87(6):64-75. PubMed ID: 27025060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the catalytic activity of alcohol dehydrogenase by nitric oxide is associated with S nitrosylation and the release of zinc.
    Gergel D; Cederbaum AI
    Biochemistry; 1996 Dec; 35(50):16186-94. PubMed ID: 8973191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide-evoked glutamate release and cGMP production in cerebellar slices: control by presynaptic 5-HT1D receptors.
    Marcoli M; Cervetto C; Paluzzi P; Guarnieri S; Raiteri M; Maura G
    Neurochem Int; 2006 Jul; 49(1):12-9. PubMed ID: 16469416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide promotes GABA release by activating a voltage-independent Ca
    Maddox JW; Gleason E
    J Neurophysiol; 2017 Mar; 117(3):1185-1199. PubMed ID: 28053242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesterol depletion from the plasma membrane impairs proton and glutamate storage in synaptic vesicles of nerve terminals.
    Tarasenko AS; Sivko RV; Krisanova NV; Himmelreich NH; Borisova TA
    J Mol Neurosci; 2010 Jul; 41(3):358-67. PubMed ID: 20369388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of nitric oxide donors on Ca2+-dependent [14C]GABA release from brain synaptosomes: the role of SH-groups.
    Nedvetsky PI; Konev SV; Rakovich AA; Petrenko SV; Mongin AA
    Biochemistry (Mosc); 2000 Sep; 65(9):1027-35. PubMed ID: 11042494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals.
    Borisova T; Nazarova A; Dekaliuk M; Krisanova N; Pozdnyakova N; Borysov A; Sivko R; Demchenko AP
    Int J Biochem Cell Biol; 2015 Feb; 59():203-15. PubMed ID: 25486182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide stimulates Ca(2+)-independent synaptic vesicle release.
    Meffert MK; Premack BA; Schulman H
    Neuron; 1994 Jun; 12(6):1235-44. PubMed ID: 7912090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide mediates interactions between GABAA receptors and adenosine A1 receptors in the rat hippocampus.
    Fragata IR; Ribeiro JA; SebastiĆ£o AM
    Eur J Pharmacol; 2006 Aug; 543(1-3):32-9. PubMed ID: 16831416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presynaptic control of inhibitory neurotransmitter content in VIAAT containing synaptic vesicles.
    Aubrey KR
    Neurochem Int; 2016 Sep; 98():94-102. PubMed ID: 27296116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of metabolic competence of isolated nerve terminals by extracellular pyruvate.
    Tarasenko AS; Linetska MV; Storchak LG; Himmelreich NH
    Ukr Biokhim Zh (1999); 2006; 78(5):51-62. PubMed ID: 17290782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptopathy under conditions of altered gravity: changes in synaptic vesicle fusion and glutamate release.
    Krisanova NV; Trikash IO; Borisova TA
    Neurochem Int; 2009 Dec; 55(8):724-31. PubMed ID: 19631248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide inhibits spinally projecting paraventricular neurons through potentiation of presynaptic GABA release.
    Li DP; Chen SR; Pan HL
    J Neurophysiol; 2002 Nov; 88(5):2664-74. PubMed ID: 12424302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blockade of presynaptic adenosine A1 receptor responses by nitric oxide and superoxide in rat hippocampus.
    Shahraki A; Stone TW
    Eur J Neurosci; 2004 Aug; 20(3):719-28. PubMed ID: 15255982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.