BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24480320)

  • 41. Lipid rafts and plasma membrane microorganization: insights from Ras.
    Parton RG; Hancock JF
    Trends Cell Biol; 2004 Mar; 14(3):141-7. PubMed ID: 15003623
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lipid Raft Facilitated Receptor Organization and Signaling: A Functional Rheostat in Embryonic Development, Stem Cell Biology and Cancer.
    Roy A; Patra SK
    Stem Cell Rev Rep; 2023 Jan; 19(1):2-25. PubMed ID: 35997871
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Visualization of PKA activity in plasma membrane microdomains.
    Depry C; Allen MD; Zhang J
    Mol Biosyst; 2011 Jan; 7(1):52-8. PubMed ID: 20838685
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Insulin-like growth factor-1 receptor signaling in 3T3-L1 adipocyte differentiation requires lipid rafts but not caveolae.
    Hong S; Huo H; Xu J; Liao K
    Cell Death Differ; 2004 Jul; 11(7):714-23. PubMed ID: 15002041
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Growth factor receptors, lipid rafts and caveolae: an evolving story.
    Pike LJ
    Biochim Biophys Acta; 2005 Dec; 1746(3):260-73. PubMed ID: 15951036
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lipid rafts regulate cellular CD40 receptor localization in vascular endothelial cells.
    Xia M; Wang Q; Zhu H; Ma J; Hou M; Tang Z; Li J; Ling W
    Biochem Biophys Res Commun; 2007 Sep; 361(3):768-74. PubMed ID: 17678876
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inhibition of Akt signaling by exclusion from lipid rafts in normal and transformed epidermal keratinocytes.
    Calay D; Vind-Kezunovic D; Frankart A; Lambert S; Poumay Y; Gniadecki R
    J Invest Dermatol; 2010 Apr; 130(4):1136-45. PubMed ID: 20054340
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impaired TCR signaling through dysfunction of lipid rafts in sphingomyelin synthase 1 (SMS1)-knockdown T cells.
    Jin ZX; Huang CR; Dong L; Goda S; Kawanami T; Sawaki T; Sakai T; Tong XP; Masaki Y; Fukushima T; Tanaka M; Mimori T; Tojo H; Bloom ET; Okazaki T; Umehara H
    Int Immunol; 2008 Nov; 20(11):1427-37. PubMed ID: 18820264
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lipid rafts enriched in phosphatidylglucoside direct astroglial differentiation by regulating tyrosine kinase activity of epidermal growth factor receptors.
    Kinoshita MO; Furuya S; Ito S; Shinoda Y; Yamazaki Y; Greimel P; Ito Y; Hashikawa T; Machida T; Nagatsuka Y; Hirabayashi Y
    Biochem J; 2009 May; 419(3):565-75. PubMed ID: 19170657
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional evidence for presence of lipid rafts in erythrocyte membranes: Gsalpha in rafts is essential for signal transduction.
    Kamata K; Manno S; Ozaki M; Takakuwa Y
    Am J Hematol; 2008 May; 83(5):371-5. PubMed ID: 18181202
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exploration of the functional proteome: lessons from lipid rafts.
    Shaw AR; Li L
    Curr Opin Mol Ther; 2003 Jun; 5(3):294-301. PubMed ID: 12870440
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sigma-1 receptors potentiate epidermal growth factor signaling towards neuritogenesis in PC12 cells: potential relation to lipid raft reconstitution.
    Takebayashi M; Hayashi T; Su TP
    Synapse; 2004 Aug; 53(2):90-103. PubMed ID: 15170821
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The modulation of gap-junctional intercellular communication by lipid rafts.
    Defamie N; Mesnil M
    Biochim Biophys Acta; 2012 Aug; 1818(8):1866-9. PubMed ID: 21986485
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lipid rafts as potential mechanistic targets underlying the pleiotropic actions of polyphenols.
    Wang R; Zhu W; Peng J; Li K; Li C
    Crit Rev Food Sci Nutr; 2022; 62(2):311-324. PubMed ID: 32951435
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatio-temporal remodeling of functional membrane microdomains organizes the signaling networks of a bacterium.
    Schneider J; Klein T; Mielich-Süss B; Koch G; Franke C; Kuipers OP; Kovács ÁT; Sauer M; Lopez D
    PLoS Genet; 2015 Apr; 11(4):e1005140. PubMed ID: 25909364
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Membrane nanodomains and microdomains in plant-microbe interactions.
    Ott T
    Curr Opin Plant Biol; 2017 Dec; 40():82-88. PubMed ID: 28865975
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lipid rafts: integrated platforms for vascular organization offering therapeutic opportunities.
    Laurenzana A; Fibbi G; Chillà A; Margheri G; Del Rosso T; Rovida E; Del Rosso M; Margheri F
    Cell Mol Life Sci; 2015 Apr; 72(8):1537-57. PubMed ID: 25552244
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Perturbing the Dynamics and Organization of Cell Membrane Components: A New Paradigm for Cancer-Targeted Therapies.
    Bernardes N; Fialho AM
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30518103
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On the force between "rafts".
    Allender DW; Schick M
    Eur Phys J E Soft Matter; 2023 Sep; 46(9):85. PubMed ID: 37736796
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High spatial-resolved heat manipulating membrane heterogeneity alters cellular migration and signaling.
    Chen X; Yang Q; Kong W; Ge Y; He J; Yan A; Li D
    Proc Natl Acad Sci U S A; 2023 Nov; 120(48):e2312603120. PubMed ID: 37983503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.