These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 24480371)

  • 1. Segmentation of abdominal organs from CT using a multi-level, hierarchical neural network strategy.
    Selver MA
    Comput Methods Programs Biomed; 2014 Mar; 113(3):830-52. PubMed ID: 24480371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic segmentation of colon in 3D CT images and removal of opacified fluid using cascade feed forward neural network.
    Gayathri Devi K; Radhakrishnan R
    Comput Math Methods Med; 2015; 2015():670739. PubMed ID: 25838838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patient oriented and robust automatic liver segmentation for pre-evaluation of liver transplantation.
    Selver MA; Kocaoğlu A; Demir GK; Doğan H; Dicle O; Güzeliş C
    Comput Biol Med; 2008 Jul; 38(7):765-84. PubMed ID: 18550045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A segmentation framework for abdominal organs from CT scans.
    Campadelli P; Casiraghi E; Pratissoli S
    Artif Intell Med; 2010 Sep; 50(1):3-11. PubMed ID: 20542673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Liver Segmentation from CT Images Using Single-Block Linear Detection.
    Huang L; Weng M; Shuai H; Huang Y; Sun J; Gao F
    Biomed Res Int; 2016; 2016():9420148. PubMed ID: 27631012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel multi-atlas strategy with dense deformation field reconstruction for abdominal and thoracic multi-organ segmentation from computed tomography.
    Oliveira B; Queirós S; Morais P; Torres HR; Gomes-Fonseca J; Fonseca JC; Vilaça JL
    Med Image Anal; 2018 Apr; 45():108-120. PubMed ID: 29432979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive segmentation of abdominal aortic aneurysms in CTA images.
    de Bruijne M; van Ginneken B; Viergever MA; Niessen WJ
    Med Image Anal; 2004 Jun; 8(2):127-38. PubMed ID: 15063862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion.
    Wang Y; Zhou Y; Shen W; Park S; Fishman EK; Yuille AL
    Med Image Anal; 2019 Jul; 55():88-102. PubMed ID: 31035060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abdominal organ segmentation using texture transforms and a Hopfield neural network.
    Koss JE; Newman FD; Johnson TK; Kirch DL
    IEEE Trans Med Imaging; 1999 Jul; 18(7):640-8. PubMed ID: 10504097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medical image analysis of 3D CT images based on extension of Haralick texture features.
    Tesar L; Shimizu A; Smutek D; Kobatake H; Nawano S
    Comput Med Imaging Graph; 2008 Sep; 32(6):513-20. PubMed ID: 18614335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liver segmentation based on Snakes Model and improved GrowCut algorithm in abdominal CT image.
    Jiang H; He B; Ma Z; Zong M; Zhou X; Fujita H
    Comput Math Methods Med; 2013; 2013():958398. PubMed ID: 24066017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atlas-based whole-body segmentation of mice from low-contrast Micro-CT data.
    Baiker M; Milles J; Dijkstra J; Henning TD; Weber AW; Que I; Kaijzel EL; Löwik CW; Reiber JH; Lelieveldt BP
    Med Image Anal; 2010 Dec; 14(6):723-37. PubMed ID: 20576463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential diagnosis of CT focal liver lesions using texture features, feature selection and ensemble driven classifiers.
    Mougiakakou SG; Valavanis IK; Nikita A; Nikita KS
    Artif Intell Med; 2007 Sep; 41(1):25-37. PubMed ID: 17624744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks.
    Gibson E; Giganti F; Hu Y; Bonmati E; Bandula S; Gurusamy K; Davidson B; Pereira SP; Clarkson MJ; Barratt DC
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1822-1834. PubMed ID: 29994628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a fully automatic deep learning system for L3 selection and body composition assessment on computed tomography.
    Ha J; Park T; Kim HK; Shin Y; Ko Y; Kim DW; Sung YS; Lee J; Ham SJ; Khang S; Jeong H; Koo K; Lee J; Kim KW
    Sci Rep; 2021 Nov; 11(1):21656. PubMed ID: 34737340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying multiple abdominal organs from CT image series using a multimodule contextual neural network and spatial fuzzy rules.
    Lee CC; Chung PC; Tsai HM
    IEEE Trans Inf Technol Biomed; 2003 Sep; 7(3):208-17. PubMed ID: 14518735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic segmentation of liver structure in CT images.
    Bae KT; Giger ML; Chen CT; Kahn CE
    Med Phys; 1993; 20(1):71-8. PubMed ID: 8455515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint probabilistic model of shape and intensity for multiple abdominal organ segmentation from volumetric CT images.
    Li C; Wang X; Li J; Eberl S; Fulham M; Yin Y; Feng DD
    IEEE J Biomed Health Inform; 2013 Jan; 17(1):92-102. PubMed ID: 23193317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Organ Segmentation for CT Scans Based on Super-Pixel and Convolutional Neural Networks.
    Liu X; Guo S; Yang B; Ma S; Zhang H; Li J; Sun C; Jin L; Li X; Yang Q; Fu Y
    J Digit Imaging; 2018 Oct; 31(5):748-760. PubMed ID: 29679242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.