These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 24480405)
21. Flexural and compressive mechanical behaviors of the porous titanium materials with entangled wire structure at different sintering conditions for load-bearing biomedical applications. He G; Liu P; Tan Q; Jiang G J Mech Behav Biomed Mater; 2013 Dec; 28():309-19. PubMed ID: 24021173 [TBL] [Abstract][Full Text] [Related]
22. Shape memory response of porous NiTi shape memory alloys fabricated by selective laser melting. Saedi S; Saghaian SE; Jahadakbar A; Shayesteh Moghaddam N; Taheri Andani M; Saghaian SM; Lu YC; Elahinia M; Karaca HE J Mater Sci Mater Med; 2018 Mar; 29(4):40. PubMed ID: 29564560 [TBL] [Abstract][Full Text] [Related]
23. Effect of Pore Size and Porosity on the Biomechanical Properties and Cytocompatibility of Porous NiTi Alloys. Jian YT; Yang Y; Tian T; Stanford C; Zhang XP; Zhao K PLoS One; 2015; 10(6):e0128138. PubMed ID: 26047515 [TBL] [Abstract][Full Text] [Related]
24. Monotonic and cyclic loading behavior of porous scaffolds made from poly(para-phenylene) for orthopedic applications. Hoyt AJ; Yakacki CM; Fertig RS; Dana Carpenter R; Frick CP J Mech Behav Biomed Mater; 2015 Jan; 41():136-48. PubMed ID: 25460410 [TBL] [Abstract][Full Text] [Related]
25. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response. Park S; Ateshian GA J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454 [TBL] [Abstract][Full Text] [Related]
26. Continuum damage interactions between tension and compression in osteonal bone. Mirzaali MJ; Bürki A; Schwiedrzik J; Zysset PK; Wolfram U J Mech Behav Biomed Mater; 2015 Sep; 49():355-69. PubMed ID: 26093346 [TBL] [Abstract][Full Text] [Related]
27. Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications. Li F; Li J; Kou H; Zhou L Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():485-488. PubMed ID: 26706555 [TBL] [Abstract][Full Text] [Related]
32. Porous titanium materials with entangled wire structure for load-bearing biomedical applications. He G; Liu P; Tan Q J Mech Behav Biomed Mater; 2012 Jan; 5(1):16-31. PubMed ID: 22100076 [TBL] [Abstract][Full Text] [Related]
33. Computational study and experimental validation of porous structures fabricated by electron beam melting: a challenge to avoid stress shielding. Herrera A; Yánez A; Martel O; Afonso H; Monopoli D Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():89-93. PubMed ID: 25491805 [TBL] [Abstract][Full Text] [Related]
34. High compressive pre-strains reduce the bending fatigue life of nitinol wire. Gupta S; Pelton AR; Weaver JD; Gong XY; Nagaraja S J Mech Behav Biomed Mater; 2015 Apr; 44():96-108. PubMed ID: 25625888 [TBL] [Abstract][Full Text] [Related]
35. The role of inelastic deformations in the mechanical response of endovascular shape memory alloy devices. Petrini L; Bertini A; Berti F; Pennati G; Migliavacca F Proc Inst Mech Eng H; 2017 May; 231(5):391-404. PubMed ID: 28427320 [TBL] [Abstract][Full Text] [Related]
36. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Fu J; Yamamoto A; Kim HY; Hosoda H; Miyazaki S Acta Biomater; 2015 Apr; 17():56-67. PubMed ID: 25676584 [TBL] [Abstract][Full Text] [Related]
37. Microstructure and mechanical properties of Ti-Zr-Cr biomedical alloys. Wang P; Feng Y; Liu F; Wu L; Guan S Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():148-52. PubMed ID: 25842119 [TBL] [Abstract][Full Text] [Related]