These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24480413)

  • 1. Forebrain glycine transporter 1 deletion enhances sensitivity to CS-US discontiguity in classical conditioning.
    Singer P; Dubroqua S; Yee BK
    Neurobiol Learn Mem; 2014 Apr; 110():47-54. PubMed ID: 24480413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of forebrain glycine transporter 1 enhances conditioned freezing to a reliable, but not an ambiguous, cue for threat in a conditioned freezing paradigm.
    Dubroqua S; Singer P; Yee BK
    Behav Brain Res; 2014 Oct; 273():1-7. PubMed ID: 25043729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of glycine transporter 1 restricted to forebrain neurons is associated with a procognitive and antipsychotic phenotypic profile.
    Yee BK; Balic E; Singer P; Schwerdel C; Grampp T; Gabernet L; Knuesel I; Benke D; Feldon J; Mohler H; Boison D
    J Neurosci; 2006 Mar; 26(12):3169-81. PubMed ID: 16554468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of forebrain neuronal glycine transporter 1 disruption in the senescent brain: evidence for age-dependent phenotypes in Pavlovian learning.
    Dubroqua S; Singer P; Boison D; Feldon J; Möhler H; Yee BK
    Behav Neurosci; 2010 Dec; 124(6):839-50. PubMed ID: 21038935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous co-agonists of the NMDA receptor modulate contextual fear in trace conditioning.
    Basu AC; Puhl MD; Coyle JT
    Neurobiol Learn Mem; 2016 Dec; 136():244-250. PubMed ID: 27633914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated Arc/Arg 3.1 protein expression in the basolateral amygdala following auditory trace-cued fear conditioning.
    Chau LS; Prakapenka A; Fleming SA; Davis AS; Galvez R
    Neurobiol Learn Mem; 2013 Nov; 106():127-33. PubMed ID: 23891993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotoxic lesions of the dorsal and ventral hippocampus impair acquisition and expression of trace-conditioned fear-potentiated startle in rats.
    Trivedi MA; Coover GD
    Behav Brain Res; 2006 Apr; 168(2):289-98. PubMed ID: 16413066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotoxic lesions of the dorsal hippocampus disrupt auditory-cued trace heart rate (fear) conditioning in rabbits.
    McEchron MD; Tseng W; Disterhoft JF
    Hippocampus; 2000; 10(6):739-51. PubMed ID: 11153719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trace conditioning and the hippocampus: the importance of contiguity.
    Bangasser DA; Waxler DE; Santollo J; Shors TJ
    J Neurosci; 2006 Aug; 26(34):8702-6. PubMed ID: 16928858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trace fear conditioning is reduced in the aging rat.
    McEchron MD; Cheng AY; Gilmartin MR
    Neurobiol Learn Mem; 2004 Sep; 82(2):71-6. PubMed ID: 15341791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trace fear conditioning in mice.
    Lugo JN; Smith GD; Holley AJ
    J Vis Exp; 2014 Mar; (85):. PubMed ID: 24686718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arousal-related associative response characteristics of dorsal lateral geniculate nucleus neurons during acoustic Pavlovian fear conditioning.
    Cain ME; Kapp BS; Puryear CB
    Behav Neurosci; 2000 Apr; 114(2):241-53. PubMed ID: 10832786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consolidation of CS and US representations in associative fear conditioning.
    Frankland PW; Josselyn SA; Anagnostaras SG; Kogan JH; Takahashi E; Silva AJ
    Hippocampus; 2004; 14(5):557-69. PubMed ID: 15301434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neocortical synaptic proliferation following forebrain-dependent trace associative learning.
    Chau LS; Davis AS; Galvez R
    Behav Neurosci; 2013 Apr; 127(2):285-92. PubMed ID: 23398434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridging the interval: theory and neurobiology of trace conditioning.
    Raybuck JD; Lattal KM
    Behav Processes; 2014 Jan; 101():103-11. PubMed ID: 24036411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hippocampectomy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat.
    McEchron MD; Bouwmeester H; Tseng W; Weiss C; Disterhoft JF
    Hippocampus; 1998; 8(6):638-46. PubMed ID: 9882021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-dependent involvement of the dorsal hippocampus in trace fear conditioning in mice.
    Misane I; Tovote P; Meyer M; Spiess J; Ogren SO; Stiedl O
    Hippocampus; 2005; 15(4):418-26. PubMed ID: 15669102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced sensitivity to learning fearful associations during adolescence.
    Den ML; Richardson R
    Neurobiol Learn Mem; 2013 Sep; 104():92-102. PubMed ID: 23756209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast Cortical Gain Adaptation in the Human Brain by Trial-To-Trial Changes of Associative Strength in Fear Learning.
    Yuan M; Giménez-Fernández T; Méndez-Bértolo C; Moratti S
    J Neurosci; 2018 Sep; 38(38):8262-8276. PubMed ID: 30104342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water deprivation enhances fear conditioning to contextual, but not discrete, conditional stimuli in rats.
    Maren S; DeCola JP; Fanselow MS
    Behav Neurosci; 1994 Jun; 108(3):645-9. PubMed ID: 7917058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.