These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2448061)

  • 21. Single sodium channels from canine ventricular myocytes: voltage dependence and relative rates of activation and inactivation.
    Berman MF; Camardo JS; Robinson RB; Siegelbaum SA
    J Physiol; 1989 Aug; 415():503-31. PubMed ID: 2561792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Properties of "creep currents" in single frog atrial cells.
    Hume JR; Uehara A
    J Gen Physiol; 1986 Jun; 87(6):833-55. PubMed ID: 2425041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation of calcium current and its sensitivity to monovalent cations in dialysed ventricular cells of guinea-pig.
    Matsuda H; Noma A
    J Physiol; 1984 Dec; 357():553-73. PubMed ID: 6096535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-ion occupancy alters gating in high-conductance, Ca(2+)-activated K+ channels.
    Neyton J; Pelleschi M
    J Gen Physiol; 1991 Apr; 97(4):641-65. PubMed ID: 2056305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions.
    Vandenberg CA
    Proc Natl Acad Sci U S A; 1987 Apr; 84(8):2560-4. PubMed ID: 2436236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ionic events responsible for the cardiac resting and action potential.
    Morad M; Tung L
    Am J Cardiol; 1982 Feb; 49(3):584-94. PubMed ID: 6277179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Block of large conductance Ca(2+)-activated K+ channels in rabbit vascular myocytes by internal Mg2+ and Na+.
    Morales E; Cole WC; Remillard CV; Leblane N
    J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):701-16. PubMed ID: 8887777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic properties and selectivity of calcium-permeable single channels in Aplysia neurones.
    Chesnoy-Marchais D
    J Physiol; 1985 Oct; 367():457-88. PubMed ID: 2414442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studies of calcium channels in rat clonal pituitary cells with patch electrode voltage clamp.
    Hagiwara S; Ohmori H
    J Physiol; 1982 Oct; 331():231-52. PubMed ID: 6296367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Voltage, calcium, and stretch activated ionic channels and intracellular calcium in bone cells.
    Ypey DL; Weidema AF; Höld KM; Van der Laarse A; Ravesloot JH; Van Der Plas A; Nijweide PJ
    J Bone Miner Res; 1992 Dec; 7 Suppl 2():S377-87. PubMed ID: 1283043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Divalent cation selectivity for external block of voltage-dependent Na+ channels prolonged by batrachotoxin. Zn2+ induces discrete substates in cardiac Na+ channels.
    Ravindran A; Schild L; Moczydlowski E
    J Gen Physiol; 1991 Jan; 97(1):89-115. PubMed ID: 1848885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sodium and calcium channels in bovine chromaffin cells.
    Fenwick EM; Marty A; Neher E
    J Physiol; 1982 Oct; 331():599-635. PubMed ID: 6296372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanosensitive cation channels in human leukaemia cells: calcium permeation and blocking effect.
    Staruschenko AV; Vedernikova EA
    J Physiol; 2002 May; 541(Pt 1):81-90. PubMed ID: 12015421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium.
    Lee KS; Marban E; Tsien RW
    J Physiol; 1985 Jul; 364():395-411. PubMed ID: 2411919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coupling of voltage-dependent gating and Ba++ block in the high-conductance, Ca++-activated K+ channel.
    Miller C; Latorre R; Reisin I
    J Gen Physiol; 1987 Sep; 90(3):427-49. PubMed ID: 2443608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcium channels in planar lipid bilayers: insights into mechanisms of ion permeation and gating.
    Rosenberg RL; Hess P; Reeves JP; Smilowitz H; Tsien RW
    Science; 1986 Mar; 231(4745):1564-6. PubMed ID: 2420007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart.
    Sakmann B; Trube G
    J Physiol; 1984 Feb; 347():641-57. PubMed ID: 6323703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ca2+ and Na+ permeability of high-threshold Ca2+ channels and their voltage-dependent block by Mg2+ ions in chick sensory neurones.
    Carbone E; Lux HD; Carabelli V; Aicardi G; Zucker H
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):1-15. PubMed ID: 9350613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Patch-clamp studies of slow potential-sensitive potassium channels in longitudinal smooth muscle cells of rabbit jejunum.
    Benham CD; Bolton TB
    J Physiol; 1983 Jul; 340():469-86. PubMed ID: 6310100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of ion permeation through calcium channels.
    Hess P; Tsien RW
    Nature; 1984 May 31-Jun 6; 309(5967):453-6. PubMed ID: 6328315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.