These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 24480701)
1. An energy dissipation and cross shear time dependent computational wear model for the analysis of polyethylene wear in total knee replacements. O'Brien ST; Bohm ER; Petrak MJ; Wyss UP; Brandt JM J Biomech; 2014 Mar; 47(5):1127-33. PubMed ID: 24480701 [TBL] [Abstract][Full Text] [Related]
2. Enhanced In-Silico Polyethylene Wear Simulation of Total Knee Replacements During Daily Activities. Shu L; Hashimoto S; Sugita N Ann Biomed Eng; 2021 Jan; 49(1):322-333. PubMed ID: 32607843 [TBL] [Abstract][Full Text] [Related]
3. The influence of simulator input conditions on the wear of total knee replacements: An experimental and computational study. Brockett CL; Abdelgaied A; Haythornthwaite T; Hardaker C; Fisher J; Jennings LM Proc Inst Mech Eng H; 2016 May; 230(5):429-39. PubMed ID: 27160561 [TBL] [Abstract][Full Text] [Related]
4. Predicting knee replacement damage in a simulator machine using a computational model with a consistent wear factor. Zhao D; Sakoda H; Sawyer WG; Banks SA; Fregly BJ J Biomech Eng; 2008 Feb; 130(1):011004. PubMed ID: 18298180 [TBL] [Abstract][Full Text] [Related]
5. Sensitivity of total knee replacement wear to variability in motion and load input: A parametric finite element analysis study. Mell SP; Wimmer MA; Lundberg HJ J Orthop Res; 2020 Jul; 38(7):1538-1549. PubMed ID: 32458460 [TBL] [Abstract][Full Text] [Related]
6. Effect of joint laxity on polyethylene wear in total knee replacement. Kretzer JP; Jakubowitz E; Sonntag R; Hofmann K; Heisel C; Thomsen M J Biomech; 2010 Apr; 43(6):1092-6. PubMed ID: 20074735 [TBL] [Abstract][Full Text] [Related]
7. Understanding the differences in wear testing method standards for total knee replacement. Abdelgaied A; Fisher J; Jennings LM J Mech Behav Biomed Mater; 2022 Aug; 132():105258. PubMed ID: 35609424 [TBL] [Abstract][Full Text] [Related]
8. The effect of insert conformity and material on total knee replacement wear. Abdelgaied A; Brockett CL; Liu F; Jennings LM; Jin Z; Fisher J Proc Inst Mech Eng H; 2014 Jan; 228(1):98-106. PubMed ID: 24297773 [TBL] [Abstract][Full Text] [Related]
9. A new protocol for wear testing of total knee prostheses from real joint kinematic data: Towards a scenario of realistic simulations of daily living activities. Abdel-Jaber S; Belvedere C; Mattia JS; Leardini A; Affatato S J Biomech; 2016 Sep; 49(13):2925-2931. PubMed ID: 27451058 [TBL] [Abstract][Full Text] [Related]
10. Finite element evaluation of the newest ISO testing standard for polyethylene total knee replacement liners. Mell SP; Fullam S; Wimmer MA; Lundberg HJ Proc Inst Mech Eng H; 2018 Jun; 232(6):545-552. PubMed ID: 29658386 [TBL] [Abstract][Full Text] [Related]
11. An efficient and robust simulator for wear of total knee replacements. Burchardt A; Abicht C; Sander O Proc Inst Mech Eng H; 2020 Sep; 234(9):921-930. PubMed ID: 32579092 [TBL] [Abstract][Full Text] [Related]
12. Prediction of backside micromotion in total knee replacements by finite element simulation. O'Brien S; Luo Y; Wu C; Petrak M; Bohm E; Brandt JM Proc Inst Mech Eng H; 2012 Mar; 226(3):235-45. PubMed ID: 22558838 [TBL] [Abstract][Full Text] [Related]
13. In vitro effects on mobile polyethylene insert under highly demanding daily activities: stair climbing. Jaber SA; Taddei P; Tozzi S; Sudanese A; Affatato S Int Orthop; 2015 Jul; 39(7):1433-40. PubMed ID: 25500956 [TBL] [Abstract][Full Text] [Related]
14. The choice of the femoral center of rotation affects material loss in total knee replacement wear testing - A parametric finite element study of ISO 14243-3. Mell SP; Wimmer MA; Lundberg HJ J Biomech; 2019 May; 88():104-112. PubMed ID: 30940359 [TBL] [Abstract][Full Text] [Related]
15. Effect of Polyethylene Crosslinking and Bearing Design on Wear of Unicompartmental Arthroplasty. Netter J; Hermida JC; D'Alessio J; Kester M; D'Lima DD J Arthroplasty; 2015 Aug; 30(8):1430-3. PubMed ID: 25865811 [TBL] [Abstract][Full Text] [Related]
16. How Does Wear Rate Compare in Well-functioning Total Hip and Knee Replacements? A Postmortem Polyethylene Liner Study. Pourzal R; Knowlton CB; Hall DJ; Laurent MP; Urban RM; Wimmer MA Clin Orthop Relat Res; 2016 Aug; 474(8):1867-75. PubMed ID: 26891896 [TBL] [Abstract][Full Text] [Related]
17. A comprehensive combined experimental and computational framework for pre-clinical wear simulation of total knee replacements. Abdelgaied A; Fisher J; Jennings LM J Mech Behav Biomed Mater; 2018 Feb; 78():282-291. PubMed ID: 29195220 [TBL] [Abstract][Full Text] [Related]
18. Total knee prosthesis polyethylene wear reduction by a new 
metal part finishing method. Gigante A; Cigna V; Manzotti S; Villa T; Salvolini E; Mattioli-Belmonte M J Appl Biomater Funct Mater; 2013 Sep; 11(2):e99-e105. PubMed ID: 23728542 [TBL] [Abstract][Full Text] [Related]
19. Wear of ultra-high molecular weight polyethylene (UHMWPE) in total knee prostheses: a review of key influences. McGloughlin TM; Kavanagh AG Proc Inst Mech Eng H; 2000; 214(4):349-59. PubMed ID: 10997056 [TBL] [Abstract][Full Text] [Related]
20. Wear analysis of unicondylar mobile bearing and fixed bearing knee systems: a knee simulator study. Kretzer JP; Jakubowitz E; Reinders J; Lietz E; Moradi B; Hofmann K; Sonntag R Acta Biomater; 2011 Feb; 7(2):710-5. PubMed ID: 20883831 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]