These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 24481036)
1. Inkjet patterned superhydrophobic paper for open-air surface microfluidic devices. Elsharkawy M; Schutzius TM; Megaridis CM Lab Chip; 2014 Mar; 14(6):1168-75. PubMed ID: 24481036 [TBL] [Abstract][Full Text] [Related]
2. Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms. Ghosh A; Ganguly R; Schutzius TM; Megaridis CM Lab Chip; 2014 May; 14(9):1538-50. PubMed ID: 24622962 [TBL] [Abstract][Full Text] [Related]
3. Patterned surface with controllable wettability for inkjet printing of flexible printed electronics. Nguyen PQ; Yeo LP; Lok BK; Lam YC ACS Appl Mater Interfaces; 2014 Mar; 6(6):4011-6. PubMed ID: 24571607 [TBL] [Abstract][Full Text] [Related]
4. Producing a superhydrophobic paper and altering its repellency through ink-jet printing. Barona D; Amirfazli A Lab Chip; 2011 Mar; 11(5):936-40. PubMed ID: 21264426 [TBL] [Abstract][Full Text] [Related]
5. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser. Zhang D; Chen F; Yang Q; Yong J; Bian H; Ou Y; Si J; Meng X; Hou X ACS Appl Mater Interfaces; 2012 Sep; 4(9):4905-12. PubMed ID: 22909564 [TBL] [Abstract][Full Text] [Related]
6. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M; Zheng Y; Zhai J; Jiang L Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162 [TBL] [Abstract][Full Text] [Related]
7. Paper-based inkjet-printed microfluidic analytical devices. Yamada K; Henares TG; Suzuki K; Citterio D Angew Chem Int Ed Engl; 2015 Apr; 54(18):5294-310. PubMed ID: 25864471 [TBL] [Abstract][Full Text] [Related]
8. Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications. Balu B; Berry AD; Hess DW; Breedveld V Lab Chip; 2009 Nov; 9(21):3066-75. PubMed ID: 19823721 [TBL] [Abstract][Full Text] [Related]
9. Superhydrophobic paper in the development of disposable labware and lab-on-paper devices. Sousa MP; Mano JF ACS Appl Mater Interfaces; 2013 May; 5(9):3731-7. PubMed ID: 23581851 [TBL] [Abstract][Full Text] [Related]
10. All-graphene-based open fluidics for pumpless, small-scale fluid transport Hall LS; Hwang D; Chen B; Van Belle B; Johnson ZT; Hondred JA; Gomes CL; Bartlett MD; Claussen JC Nanoscale Horiz; 2021 Jan; 6(1):24-32. PubMed ID: 33165477 [TBL] [Abstract][Full Text] [Related]
11. Maskless Hydrophilic Patterning of the Superhydrophobic Aluminum Surface by an Atmospheric Pressure Microplasma Jet for Water Adhesion Controlling. Liu J; Song J; Wang G; Chen F; Liu S; Yang X; Sun J; Zheng H; Huang L; Jin Z; Liu X ACS Appl Mater Interfaces; 2018 Feb; 10(8):7497-7503. PubMed ID: 29405701 [TBL] [Abstract][Full Text] [Related]
12. Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability. Fang G; Li W; Wang X; Qiao G Langmuir; 2008 Oct; 24(20):11651-60. PubMed ID: 18788770 [TBL] [Abstract][Full Text] [Related]
13. Uphill Water Transport on a Wettability-Patterned Surface: Experimental and Theoretical Results. Hirai Y; Mayama H; Matsuo Y; Shimomura M ACS Appl Mater Interfaces; 2017 May; 9(18):15814-15821. PubMed ID: 28421741 [TBL] [Abstract][Full Text] [Related]
14. Patterning of controllable surface wettability for printing techniques. Tian D; Song Y; Jiang L Chem Soc Rev; 2013 Jun; 42(12):5184-209. PubMed ID: 23511610 [TBL] [Abstract][Full Text] [Related]
15. Dewetting of conducting polymer inkjet droplets on patterned surfaces. Wang JZ; Zheng ZH; Li HW; Huck WT; Sirringhaus H Nat Mater; 2004 Mar; 3(3):171-6. PubMed ID: 14991019 [TBL] [Abstract][Full Text] [Related]
16. Inkjet Pattern-Guided Liquid Templates on Superhydrophobic Substrates for Rapid Prototyping of Microfluidic Devices. Lai X; Pu Z; Yu H; Li D ACS Appl Mater Interfaces; 2020 Jan; 12(1):1817-1824. PubMed ID: 31804059 [TBL] [Abstract][Full Text] [Related]
17. Magnetically Responsive Superhydrophobic Surface: In Situ Reversible Switching of Water Droplet Wettability and Adhesion for Droplet Manipulation. Yang C; Wu L; Li G ACS Appl Mater Interfaces; 2018 Jun; 10(23):20150-20158. PubMed ID: 29806941 [TBL] [Abstract][Full Text] [Related]
18. Motorized actuation system to perform droplet operations on printed plastic sheets. Kong T; Brien R; Njus Z; Kalwa U; Pandey S Lab Chip; 2016 May; 16(10):1861-72. PubMed ID: 27080172 [TBL] [Abstract][Full Text] [Related]
19. On the Droplet Size and Application of Wettability Analysis for the Development of Ink and Printing Substrates. Grüßer M; Waugh DG; Lawrence J; Langer N; Scholz D Langmuir; 2019 Sep; 35(38):12356-12365. PubMed ID: 31468975 [TBL] [Abstract][Full Text] [Related]
20. Patterning a Superhydrophobic Area on a Facile Fabricated Superhydrophilic Layer Based on an Inkjet-Printed Water-Soluble Polymer Template. Sun J; Li Y; Liu G; Chu F; Chen C; Zhang Y; Tian H; Song Y Langmuir; 2020 Aug; 36(33):9952-9959. PubMed ID: 32787129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]