These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 24481073)

  • 1. Mathematical models light up plant signaling.
    Chew YH; Smith RW; Jones HJ; Seaton DD; Grima R; Halliday KJ
    Plant Cell; 2014 Jan; 26(1):5-20. PubMed ID: 24481073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1950-64. PubMed ID: 23037003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PHYTOCHROME-INTERACTING FACTOR5 as a modulator of auxin signaling in Arabidopsis.
    Nozue K; Harmer SL; Maloof JN
    Plant Physiol; 2011 May; 156(1):357-72. PubMed ID: 21430186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An extended mathematical model for reproducing the phase response of Arabidopsis thaliana under various light conditions.
    Ohara T; Fukuda H; Tokuda IT
    J Theor Biol; 2015 Oct; 382():337-44. PubMed ID: 26231414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signaling networks in the plant circadian system.
    Yanovsky MJ; Kay SA
    Curr Opin Plant Biol; 2001 Oct; 4(5):429-35. PubMed ID: 11597501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana.
    Yamashino T; Nomoto Y; Lorrain S; Miyachi M; Ito S; Nakamichi N; Fankhauser C; Mizuno T
    Plant Signal Behav; 2013 Mar; 8(3):e23390. PubMed ID: 23299336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of gene expression by light.
    Casal JJ; Yanovsky MJ
    Int J Dev Biol; 2005; 49(5-6):501-11. PubMed ID: 16096960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: phytochrome signaling controls systemic acquired resistance rather than local defense.
    Griebel T; Zeier J
    Plant Physiol; 2008 Jun; 147(2):790-801. PubMed ID: 18434604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light signals and flowering.
    Thomas B
    J Exp Bot; 2006; 57(13):3387-93. PubMed ID: 16980594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function.
    Staiger D; Allenbach L; Salathia N; Fiechter V; Davis SJ; Millar AJ; Chory J; Fankhauser C
    Genes Dev; 2003 Jan; 17(2):256-68. PubMed ID: 12533513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unanticipated regulatory roles for Arabidopsis phytochromes revealed by null mutant analysis.
    Hu W; Franklin KA; Sharrock RA; Jones MA; Harmer SL; Lagarias JC
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1542-7. PubMed ID: 23302690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attenuation of phytochrome A and B signaling pathways by the Arabidopsis circadian clock.
    Anderson SL; Somers DE; Millar AJ; Hanson K; Chory J; Kay SA
    Plant Cell; 1997 Oct; 9(10):1727-43. PubMed ID: 9368413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm.
    Kircher S; Gil P; Kozma-Bognár L; Fejes E; Speth V; Husselstein-Muller T; Bauer D; Adám E; Schäfer E; Nagy F
    Plant Cell; 2002 Jul; 14(7):1541-55. PubMed ID: 12119373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock.
    Somers DE; Devlin PF; Kay SA
    Science; 1998 Nov; 282(5393):1488-90. PubMed ID: 9822379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytochrome A enhances the promotion of hypocotyl growth caused by reductions in levels of phytochrome B in its far-red-light-absorbing form in light-grown Arabidopsis thaliana.
    Casal JJ
    Plant Physiol; 1996 Nov; 112(3):965-73. PubMed ID: 8938405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring Phytochrome-Dependent Light Input to the Plant Circadian Clock.
    Oakenfull RJ; Ronald J; Davis SJ
    Methods Mol Biol; 2019; 2026():179-192. PubMed ID: 31317413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The circadian clock has transient plasticity of period and is required for timing of nocturnal processes in Arabidopsis.
    Dodd AN; Dalchau N; Gardner MJ; Baek SJ; Webb AAR
    New Phytol; 2014 Jan; 201(1):168-179. PubMed ID: 24102325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period.
    Salomé PA; To JP; Kieber JJ; McClung CR
    Plant Cell; 2006 Jan; 18(1):55-69. PubMed ID: 16326927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis.
    Iñigo S; Alvarez MJ; Strasser B; Califano A; Cerdán PD
    Plant J; 2012 Feb; 69(4):601-12. PubMed ID: 21985558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of light signaling with photoperiodic flowering and circadian rhythm.
    Ni M
    Cell Res; 2005 Aug; 15(8):559-66. PubMed ID: 16117845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.