These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 24481650)

  • 21. Structural evidence for a two-regime photobleaching mechanism in a reversibly switchable fluorescent protein.
    Duan C; Adam V; Byrdin M; Ridard J; Kieffer-Jaquinod S; Morlot C; Arcizet D; Demachy I; Bourgeois D
    J Am Chem Soc; 2013 Oct; 135(42):15841-50. PubMed ID: 24059326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein.
    Millington M; Grindlay GJ; Altenbach K; Neely RK; Kolch W; Bencina M; Read ND; Jones AC; Dryden DT; Magennis SW
    Biophys Chem; 2007 May; 127(3):155-64. PubMed ID: 17336446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectroscopic characterization of Venus at the single molecule level.
    David CC; Dedecker P; De Cremer G; Verstraeten N; Kint C; Michiels J; Hofkens J
    Photochem Photobiol Sci; 2012 Feb; 11(2):358-63. PubMed ID: 22212707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binding of the b-subunit in the ATP synthase from Escherichia coli.
    Diez M; Börsch M; Zimmermann B; Turina P; Dunn SD; Gräber P
    Biochemistry; 2004 Feb; 43(4):1054-64. PubMed ID: 14744151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-molecule imaging of fluorescent proteins.
    Douglass AD; Vale RD
    Methods Cell Biol; 2008; 85():113-25. PubMed ID: 18155461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterodimerization of integrin Mac-1 subunits studied by single-molecule imaging.
    Fu G; Wang C; Liu L; Wang GY; Chen YZ; Xu ZZ
    Biochem Biophys Res Commun; 2008 Apr; 368(4):882-6. PubMed ID: 18279666
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum dots for single-pair fluorescence resonance energy transfer in membrane- integrated EFoF1.
    Galvez E; Düser M; Börsch M; Wrachtrup J; Gräber P
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):1017-21. PubMed ID: 18793181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells.
    Tramier M; Zahid M; Mevel JC; Masse MJ; Coppey-Moisan M
    Microsc Res Tech; 2006 Nov; 69(11):933-9. PubMed ID: 16941642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments.
    Valentin G; Verheggen C; Piolot T; Neel H; Coppey-Moisan M; Bertrand E
    Nat Methods; 2005 Nov; 2(11):801. PubMed ID: 16278647
    [No Abstract]   [Full Text] [Related]  

  • 31. Selective fluorescence recovery after bleaching of single E2GFP proteins induced by two-photon excitation.
    Chirico G; Diaspro A; Cannone F; Collini M; Bologna S; Pellegrini V; Beltram F
    Chemphyschem; 2005 Feb; 6(2):328-35. PubMed ID: 15751356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical analysis of the HIF-1 complex in living cells by FRET and FRAP.
    Wotzlaw C; Otto T; Berchner-Pfannschmidt U; Metzen E; Acker H; Fandrey J
    FASEB J; 2007 Mar; 21(3):700-7. PubMed ID: 17197389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.
    Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW
    J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photobleaching of YFP does not produce a CFP-like species that affects FRET measurements.
    Thaler C; Vogel SS; Ikeda SR; Chen H
    Nat Methods; 2006 Jul; 3(7):491; author reply 492-3. PubMed ID: 16791204
    [No Abstract]   [Full Text] [Related]  

  • 35. Photoactivated structural dynamics of fluorescent proteins.
    Bourgeois D; Regis-Faro A; Adam V
    Biochem Soc Trans; 2012 Jun; 40(3):531-8. PubMed ID: 22616863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Revealing protein dynamics by photobleaching techniques.
    van Drogen F; Peter M
    Methods Mol Biol; 2004; 284():287-306. PubMed ID: 15173624
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of simple photobleaching microscopy techniques for the determination of the balance between anterograde and retrograde axonal transport.
    Iliev AI; Wouters FS
    J Neurosci Methods; 2007 Mar; 161(1):39-46. PubMed ID: 17123628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photobleaching of YFP does not produce a CFP-like species that affects FRET measurements.
    Verrier SE; Söling HD
    Nat Methods; 2006 Jul; 3(7):491-2; author reply 492-3. PubMed ID: 16791203
    [No Abstract]   [Full Text] [Related]  

  • 39. Nonexponential statistics of fluorescence photobleaching.
    Berglund AJ
    J Chem Phys; 2004 Aug; 121(7):2899-903. PubMed ID: 15291600
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Partial acceptor photobleaching-based quantitative FRET method completely overcoming emission spectral crosstalks.
    Li H; Yu H; Chen T
    Microsc Microanal; 2012 Oct; 18(5):1021-9. PubMed ID: 23026309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.