These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24481836)

  • 1. Ca2+ nanosparks: shining light on the dyadic cleft but missing the intensity of its signal.
    Zhao YT; Valdivia HH
    Circ Res; 2014 Jan; 114(3):396-8. PubMed ID: 24481836
    [No Abstract]   [Full Text] [Related]  

  • 2. Imaging Ca2+ nanosparks in heart with a new targeted biosensor.
    Shang W; Lu F; Sun T; Xu J; Li LL; Wang Y; Wang G; Chen L; Wang X; Cannell MB; Wang SQ; Cheng H
    Circ Res; 2014 Jan; 114(3):412-20. PubMed ID: 24257462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation.
    Voigt N; Heijman J; Wang Q; Chiang DY; Li N; Karck M; Wehrens XHT; Nattel S; Dobrev D
    Circulation; 2014 Jan; 129(2):145-156. PubMed ID: 24249718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ release via InsP3Rs enhances RyR recruitment during Ca2+ transients by increasing dyadic [Ca2+] in cardiomyocytes.
    Demydenko K; Sipido KR; Roderick HL
    J Cell Sci; 2021 Jul; 134(14):. PubMed ID: 34125209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium/calmodulin-dependent kinase II and nitric oxide synthase 1-dependent modulation of ryanodine receptors during β-adrenergic stimulation is restricted to the dyadic cleft.
    Dries E; Santiago DJ; Johnson DM; Gilbert G; Holemans P; Korte SM; Roderick HL; Sipido KR
    J Physiol; 2016 Oct; 594(20):5923-5939. PubMed ID: 27121757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Regulative mechanism of calcium signaling in cardiomyocytes].
    Endo M
    Masui; 2002 Dec; 51 Suppl():S72-8. PubMed ID: 12655717
    [No Abstract]   [Full Text] [Related]  

  • 7. Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiac myocytes.
    Belmonte S; Morad M
    Ann N Y Acad Sci; 2008 Mar; 1123():58-63. PubMed ID: 18375577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local is as local does: the unitary nature of SR Ca2+ release in cardiac ventricular myocytes.
    Fowler MR
    J Physiol; 2009 Jan; 587(2):301-2. PubMed ID: 19015191
    [No Abstract]   [Full Text] [Related]  

  • 9. A univariate model of calcium release in the dyadic cleft of cardiac myocytes.
    Fan J; Yu Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4499-503. PubMed ID: 19964372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein geometry and placement in the cardiac dyad influence macroscopic properties of calcium-induced calcium release.
    Tanskanen AJ; Greenstein JL; Chen A; Sun SX; Winslow RL
    Biophys J; 2007 May; 92(10):3379-96. PubMed ID: 17325016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A probability density approach to modeling local control of calcium-induced calcium release in cardiac myocytes.
    Williams GS; Huertas MA; Sobie EA; Jafri MS; Smith GD
    Biophys J; 2007 Apr; 92(7):2311-28. PubMed ID: 17237200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the tubular network on the characteristics of calcium transients in cardiac myocytes.
    Marchena M; Echebarria B
    PLoS One; 2020; 15(4):e0231056. PubMed ID: 32302318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering ryanodine receptor array operation in cardiac myocytes.
    Xie W; Brochet DX; Wei S; Wang X; Cheng H
    J Gen Physiol; 2010 Aug; 136(2):129-33. PubMed ID: 20660655
    [No Abstract]   [Full Text] [Related]  

  • 14. Interplay of ryanodine receptor distribution and calcium dynamics.
    Izu LT; Means SA; Shadid JN; Chen-Izu Y; Balke CW
    Biophys J; 2006 Jul; 91(1):95-112. PubMed ID: 16603499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium and Excitation-Contraction Coupling in the Heart.
    Eisner DA; Caldwell JL; Kistamás K; Trafford AW
    Circ Res; 2017 Jul; 121(2):181-195. PubMed ID: 28684623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial and temporal Ca2+, Mg2+, and ATP2- dynamics in cardiac dyads during calcium release.
    Valent I; Zahradníková A; Pavelková J; Zahradník I
    Biochim Biophys Acta; 2007 Jan; 1768(1):155-66. PubMed ID: 17034755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simplified local control model of calcium-induced calcium release in cardiac ventricular myocytes.
    Hinch R; Greenstein JL; Tanskanen AJ; Xu L; Winslow RL
    Biophys J; 2004 Dec; 87(6):3723-36. PubMed ID: 15465866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of cardiac alternans in atrial cells: intracellular Ca2⁺ disturbances lead the way.
    Valdivia HH
    Circ Res; 2015 Feb; 116(5):778-80. PubMed ID: 25722439
    [No Abstract]   [Full Text] [Related]  

  • 19. Multi-scale models of local control of calcium induced calcium release.
    Hinch R; Greenstein JL; Winslow RL
    Prog Biophys Mol Biol; 2006; 90(1-3):136-50. PubMed ID: 16321427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of FK-506 binding protein 12.0 modulates excitation contraction coupling in adult rabbit ventricular cardiomyocytes.
    Seidler T; Loughrey CM; Zibrova D; Kettlewell S; Teucher N; Kögler H; Hasenfuss G; Smith GL
    Circ Res; 2007 Nov; 101(10):1020-9. PubMed ID: 17872463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.