These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 24482052)
1. Effect of PGPR Serratia marcescens BC-3 and AMF Glomus intraradices on phytoremediation of petroleum contaminated soil. Dong R; Gu L; Guo C; Xun F; Liu J Ecotoxicology; 2014 May; 23(4):674-80. PubMed ID: 24482052 [TBL] [Abstract][Full Text] [Related]
2. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Xun F; Xie B; Liu S; Guo C Environ Sci Pollut Res Int; 2015 Jan; 22(1):598-608. PubMed ID: 25091168 [TBL] [Abstract][Full Text] [Related]
3. Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil. Alarcón A; Davies FT; Autenrieth RL; Zuberer DA Int J Phytoremediation; 2008; 10():251-63. PubMed ID: 19260211 [TBL] [Abstract][Full Text] [Related]
4. PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Hou J; Liu W; Wang B; Wang Q; Luo Y; Franks AE Chemosphere; 2015 Nov; 138():592-8. PubMed ID: 26210024 [TBL] [Abstract][Full Text] [Related]
5. Effect of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on microorganism of phenanthrene and pyrene contaminated soils. Li W; Li WB; Xing LJ; Guo SX Int J Phytoremediation; 2023; 25(2):240-251. PubMed ID: 35549569 [TBL] [Abstract][Full Text] [Related]
6. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Jankong P; Visoottiviseth P Chemosphere; 2008 Jul; 72(7):1092-7. PubMed ID: 18499218 [TBL] [Abstract][Full Text] [Related]
7. Coupling biostimulation and phytoremediation for the restoration of petroleum hydrocarbon-contaminated soil. Li J; Ma N; Hao B; Qin F; Zhang X Int J Phytoremediation; 2023; 25(6):706-716. PubMed ID: 35900160 [TBL] [Abstract][Full Text] [Related]
8. Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. Hernández-Ortega HA; Alarcón A; Ferrera-Cerrato R; Zavaleta-Mancera HA; López-Delgado HA; Mendoza-López MR J Environ Manage; 2012 Mar; 95 Suppl():S319-24. PubMed ID: 21420227 [TBL] [Abstract][Full Text] [Related]
9. Phytoremediation of petroleum hydrocarbon-contaminated saline-alkali soil by wild ornamental Iridaceae species. Cheng L; Wang Y; Cai Z; Liu J; Yu B; Zhou Q Int J Phytoremediation; 2017 Mar; 19(3):300-308. PubMed ID: 27592632 [TBL] [Abstract][Full Text] [Related]
10. Synergetic effects of microbial-phytoremediation reshape microbial communities and improve degradation of petroleum contaminants. Wang A; Fu W; Feng Y; Liu Z; Song D J Hazard Mater; 2022 May; 429():128396. PubMed ID: 35236043 [TBL] [Abstract][Full Text] [Related]
11. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Agnello AC; Bagard M; van Hullebusch ED; Esposito G; Huguenot D Sci Total Environ; 2016 Sep; 563-564():693-703. PubMed ID: 26524994 [TBL] [Abstract][Full Text] [Related]
12. Effectiveness of the Zea mays-Streptomyces association for the phytoremediation of petroleum hydrocarbons impacted soils. Baoune H; Aparicio JD; Acuña A; El Hadj-Khelil AO; Sanchez L; Polti MA; Alvarez A Ecotoxicol Environ Saf; 2019 Nov; 184():109591. PubMed ID: 31514081 [TBL] [Abstract][Full Text] [Related]
13. Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils. Mishra V; Gupta A; Kaur P; Singh S; Singh N; Gehlot P; Singh J Int J Phytoremediation; 2016; 18(7):697-703. PubMed ID: 26682583 [TBL] [Abstract][Full Text] [Related]
14. Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant. Jones RK; Sun WH; Tang CS; Robert FM Environ Sci Pollut Res Int; 2004; 11(5):340-6. PubMed ID: 15506638 [TBL] [Abstract][Full Text] [Related]
15. Study on the efficiency of phytoremediation of soils heavily polluted with PAHs in petroleum-contaminated sites by microorganism. Hou L; Liu R; Li N; Dai Y; Yan J Environ Sci Pollut Res Int; 2019 Oct; 26(30):31401-31413. PubMed ID: 31485937 [TBL] [Abstract][Full Text] [Related]
16. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. Rajtor M; Piotrowska-Seget Z Chemosphere; 2016 Nov; 162():105-16. PubMed ID: 27487095 [TBL] [Abstract][Full Text] [Related]
17. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Ju W; Liu L; Jin X; Duan C; Cui Y; Wang J; Ma D; Zhao W; Wang Y; Fang L Chemosphere; 2020 Sep; 254():126724. PubMed ID: 32334248 [TBL] [Abstract][Full Text] [Related]
18. [Influence of Mirabilis jalapa Linn. Growth on the Microbial Community and Petroleum Hydrocarbon Degradation in Petroleum Contaminated Saline-alkali Soil]. Jiao HH; Cui BJ; Wu SH; Bai ZH; Huang ZB Huan Jing Ke Xue; 2015 Sep; 36(9):3471-8. PubMed ID: 26717712 [TBL] [Abstract][Full Text] [Related]
19. Effects of biochar immobilization of Serratia sp. F4 OR414381 on bioremediation of petroleum contamination and bacterial community composition in loess soil. Zhang X; Wu M; Zhang T; Gao H; Ou Y; Li M J Hazard Mater; 2024 May; 470():134137. PubMed ID: 38555671 [TBL] [Abstract][Full Text] [Related]
20. Phytoremediation potential and ecological and phenological changes of native pioneer plants from weathered oil spill-impacted sites at tropical wetlands. Palma-Cruz Fde J; Pérez-Vargas J; Rivera Casado NA; Gómez Guzmán O; Calva-Calva G Environ Sci Pollut Res Int; 2016 Aug; 23(16):16359-71. PubMed ID: 27164872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]