These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 24482062)

  • 1. Role of T-type channels in vasomotor function: team player or chameleon?
    Kuo IY; Howitt L; Sandow SL; McFarlane A; Hansen PB; Hill CE
    Pflugers Arch; 2014 Apr; 466(4):767-79. PubMed ID: 24482062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic deficit in nitric oxide elicits oxidative stress and augments T-type calcium-channel contribution to vascular tone of rodent arteries and arterioles.
    Howitt L; Kuo IY; Ellis A; Chaston DJ; Shin HS; Hansen PB; Hill CE
    Cardiovasc Res; 2013 Jun; 98(3):449-57. PubMed ID: 23436820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is there a role for T-type Ca2+ channels in regulation of vasomotor tone in mesenteric arterioles?
    Jensen LJ; Holstein-Rathlou NH
    Can J Physiol Pharmacol; 2009 Jan; 87(1):8-20. PubMed ID: 19142211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CaV3.1 T-Type Ca2+ Channels Contribute to Myogenic Signaling in Rat Retinal Arterioles.
    Fernández JA; McGahon MK; McGeown JG; Curtis TM
    Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5125-32. PubMed ID: 26241400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T-type calcium channels and vascular function: the new kid on the block?
    Kuo IY; Wölfle SE; Hill CE
    J Physiol; 2011 Feb; 589(Pt 4):783-95. PubMed ID: 21173074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of L- and T-type Ca2+ channels in rat cerebral arteries: role in myogenic tone development.
    Abd El-Rahman RR; Harraz OF; Brett SE; Anfinogenova Y; Mufti RE; Goldman D; Welsh DG
    Am J Physiol Heart Circ Physiol; 2013 Jan; 304(1):H58-71. PubMed ID: 23103495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myogenic tone is impaired at low arterial pressure in mice deficient in the low-voltage-activated CaV 3.1 T-type Ca(2+) channel.
    Björling K; Morita H; Olsen MF; Prodan A; Hansen PB; Lory P; Holstein-Rathlou NH; Jensen LJ
    Acta Physiol (Oxf); 2013 Apr; 207(4):709-20. PubMed ID: 23356724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring T-Type Calcium Channel Currents in Isolated Vascular Smooth Muscle Cells.
    Kuo IY; Hill CE
    Methods Mol Biol; 2017; 1527():189-200. PubMed ID: 28116717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of the Cav3.2 T-type calcium channel directly regulates its gating properties.
    Blesneac I; Chemin J; Bidaud I; Huc-Brandt S; Vandermoere F; Lory P
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13705-10. PubMed ID: 26483470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CaV1.2/CaV3.x channels mediate divergent vasomotor responses in human cerebral arteries.
    Harraz OF; Visser F; Brett SE; Goldman D; Zechariah A; Hashad AM; Menon BK; Watson T; Starreveld Y; Welsh DG
    J Gen Physiol; 2015 May; 145(5):405-18. PubMed ID: 25918359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T-type voltage-gated calcium channels regulate the tone of mouse efferent arterioles.
    Poulsen CB; Al-Mashhadi RH; Cribbs LL; Skøtt O; Hansen PB
    Kidney Int; 2011 Feb; 79(4):443-51. PubMed ID: 21068717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence both L-type and non-L-type voltage-dependent calcium channels contribute to cerebral artery vasospasm following loss of NO in the rat.
    McNeish AJ; Jimenez Altayo F; Garland CJ
    Vascul Pharmacol; 2010; 53(3-4):151-9. PubMed ID: 20601125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological roles of K+ channels in vascular smooth muscle cells.
    Ko EA; Han J; Jung ID; Park WS
    J Smooth Muscle Res; 2008 Apr; 44(2):65-81. PubMed ID: 18552454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of voltage-gated calcium currents in freshly isolated smooth muscle cells from rat tail main artery.
    Petkov GV; Fusi F; Saponara S; Gagov HS; Sgaragli GP; Boev KK
    Acta Physiol Scand; 2001 Nov; 173(3):257-65. PubMed ID: 11736688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced contractility in pregnancy is associated with augmented TRPC3, L-type, and T-type voltage-dependent calcium channel function in rat uterine radial artery.
    Senadheera S; Bertrand PP; Grayson TH; Leader L; Tare M; Murphy TV; Sandow SL
    Am J Physiol Regul Integr Comp Physiol; 2013 Oct; 305(8):R917-26. PubMed ID: 23948776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular effects of calcium channel antagonists: new evidence.
    Richard S
    Drugs; 2005; 65 Suppl 2():1-10. PubMed ID: 16398057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of cellular synchronization in the vascular wall. Mechanisms of vasomotion.
    Matchkov VV
    Dan Med Bull; 2010 Oct; 57(10):B4191. PubMed ID: 21040688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional impact of alternative splicing of human T-type Cav3.3 calcium channels.
    Murbartián J; Arias JM; Perez-Reyes E
    J Neurophysiol; 2004 Dec; 92(6):3399-407. PubMed ID: 15254077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are voltage-dependent ion channels involved in the endothelial cell control of vasomotor tone?
    Figueroa XF; Chen CC; Campbell KP; Damon DN; Day KH; Ramos S; Duling BR
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1371-83. PubMed ID: 17513486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low voltage-activated calcium channels in vascular smooth muscle: T-type channels and AVP-stimulated calcium spiking.
    Brueggemann LI; Martin BL; Barakat J; Byron KL; Cribbs LL
    Am J Physiol Heart Circ Physiol; 2005 Feb; 288(2):H923-35. PubMed ID: 15498818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.