These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24482161)

  • 21. Dlx5, a positive regulator of osteoblastogenesis, is essential for osteoblast-osteoclast coupling.
    Samee N; Geoffroy V; Marty C; Schiltz C; Vieux-Rochas M; Levi G; de Vernejoul MC
    Am J Pathol; 2008 Sep; 173(3):773-80. PubMed ID: 18669617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular mechanisms in coupling of bone formation to resorption.
    Martin T; Gooi JH; Sims NA
    Crit Rev Eukaryot Gene Expr; 2009; 19(1):73-88. PubMed ID: 19191758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Smad4 is required for maintaining normal murine postnatal bone homeostasis.
    Tan X; Weng T; Zhang J; Wang J; Li W; Wan H; Lan Y; Cheng X; Hou N; Liu H; Ding J; Lin F; Yang R; Gao X; Chen D; Yang X
    J Cell Sci; 2007 Jul; 120(Pt 13):2162-70. PubMed ID: 17550966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of bone formation and remodeling by G-protein-coupled receptor 48.
    Luo J; Zhou W; Zhou X; Li D; Weng J; Yi Z; Cho SG; Li C; Yi T; Wu X; Li XY; de Crombrugghe B; Höök M; Liu M
    Development; 2009 Aug; 136(16):2747-56. PubMed ID: 19605502
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Galectin-3 in Bone Cell Differentiation, Bone Pathophysiology and Vascular Osteogenesis.
    Iacobini C; Fantauzzi CB; Pugliese G; Menini S
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29160796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. WISP-1 is an osteoblastic regulator expressed during skeletal development and fracture repair.
    French DM; Kaul RJ; D'Souza AL; Crowley CW; Bao M; Frantz GD; Filvaroff EH; Desnoyers L
    Am J Pathol; 2004 Sep; 165(3):855-67. PubMed ID: 15331410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Medaka as a model organism of skeletal development].
    Inohaya K; Kudo A
    Tanpakushitsu Kakusan Koso; 2000 Dec; 45(17 Suppl):2745-51. PubMed ID: 11187775
    [No Abstract]   [Full Text] [Related]  

  • 28. Coordination of chondrogenesis and osteogenesis by hypertrophic chondrocytes in endochondral bone development.
    Hojo H; Ohba S; Yano F; Chung UI
    J Bone Miner Metab; 2010 Sep; 28(5):489-502. PubMed ID: 20607327
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The hedgehog target Vlk genetically interacts with Gli3 to regulate chondrocyte differentiation during mouse long bone development.
    Probst S; Zeller R; Zuniga A
    Differentiation; 2013; 85(4-5):121-30. PubMed ID: 23792766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mesenchyme-specific overexpression of nucleolar protein 66 in mice inhibits skeletal growth and bone formation.
    Chen Q; Zhang L; de Crombrugghe B; Krahe R
    FASEB J; 2015 Jun; 29(6):2555-65. PubMed ID: 25746793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts.
    Masuyama R; Stockmans I; Torrekens S; Van Looveren R; Maes C; Carmeliet P; Bouillon R; Carmeliet G
    J Clin Invest; 2006 Dec; 116(12):3150-9. PubMed ID: 17099775
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of osteogenic differentiation during skeletal development.
    Deng ZL; Sharff KA; Tang N; Song WX; Luo J; Luo X; Chen J; Bennett E; Reid R; Manning D; Xue A; Montag AG; Luu HH; Haydon RC; He TC
    Front Biosci; 2008 Jan; 13():2001-21. PubMed ID: 17981687
    [TBL] [Abstract][Full Text] [Related]  

  • 33. rBMP represses Wnt signaling and influences skeletal progenitor cell fate specification during bone repair.
    Minear S; Leucht P; Miller S; Helms JA
    J Bone Miner Res; 2010 Jun; 25(6):1196-207. PubMed ID: 20200943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. c-Src-Dependent and -Independent Functions of Matk in Osteoclasts and Osteoblasts.
    Kim JH; Kim K; Kim I; Seong S; Kim N
    J Immunol; 2018 Apr; 200(7):2455-2463. PubMed ID: 29440352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Transdifferentiation of chondrocytes into osteogenic cells].
    Włodarski K; Włodarski P; Galus R; Brodzikowska A
    Chir Narzadow Ruchu Ortop Pol; 2006; 71(3):199-203. PubMed ID: 17131726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular and cellular characterization of mouse calvarial osteoblasts derived from neural crest and paraxial mesoderm.
    Xu Y; Malladi P; Zhou D; Longaker MT
    Plast Reconstr Surg; 2007 Dec; 120(7):1783-1795. PubMed ID: 18090740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Roles of Wnt signals in bone resorption during physiological and pathological states.
    Maeda K; Takahashi N; Kobayashi Y
    J Mol Med (Berl); 2013 Jan; 91(1):15-23. PubMed ID: 23111637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone remodelling at a glance.
    Crockett JC; Rogers MJ; Coxon FP; Hocking LJ; Helfrich MH
    J Cell Sci; 2011 Apr; 124(Pt 7):991-8. PubMed ID: 21402872
    [No Abstract]   [Full Text] [Related]  

  • 39. Translating insights from development into regenerative medicine: the function of Wnts in bone biology.
    Leucht P; Minear S; Ten Berge D; Nusse R; Helms JA
    Semin Cell Dev Biol; 2008 Oct; 19(5):434-43. PubMed ID: 18824114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A fundamental transcription factor for bone and cartilage.
    Komori T
    Biochem Biophys Res Commun; 2000 Oct; 276(3):813-6. PubMed ID: 11027552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.