BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24482191)

  • 1. Expression and functional analysis of putative vacuolar Ca2+-transporters (CAXs and ACAs) in roots of salt tolerant and sensitive rice cultivars.
    Yamada N; Theerawitaya C; Cha-um S; Kirdmanee C; Takabe T
    Protoplasma; 2014 Sep; 251(5):1067-75. PubMed ID: 24482191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars.
    Kader MA; Seidel T; Golldack D; Lindberg S
    J Exp Bot; 2006; 57(15):4257-68. PubMed ID: 17088362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Rice Cation/H
    Zou W; Chen J; Meng L; Chen D; He H; Ye G
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residues in internal repeats of the rice cation/H+ exchanger are involved in the transport and selection of cations.
    Kamiya T; Maeshima M
    J Biol Chem; 2004 Jan; 279(1):812-9. PubMed ID: 14561741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of developmentally regulated plasma membrane polypeptide (DREPP2) in rice root tip and interaction with Ca(2+)/CaM complex and microtubule.
    Yamada N; Theerawitaya C; Kageyama H; Cha-Um S; Takabe T
    Protoplasma; 2015 Nov; 252(6):1519-27. PubMed ID: 25743039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning and characterization of plasma membrane- and vacuolar-type Na⁺/H⁺ antiporters of an alkaline-salt-tolerant monocot, Puccinellia tenuiflora.
    Kobayashi S; Abe N; Yoshida KT; Liu S; Takano T
    J Plant Res; 2012 Jul; 125(4):587-94. PubMed ID: 22270695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response.
    Moons A; De Keyser A; Van Montagu M
    Gene; 1997 Jun; 191(2):197-204. PubMed ID: 9218720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na
    Zhang Y; Fang J; Wu X; Dong L
    BMC Plant Biol; 2018 Dec; 18(1):375. PubMed ID: 30594151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Na
    Chuamnakthong S; Nampei M; Ueda A
    Plant Sci; 2019 Oct; 287():110171. PubMed ID: 31481219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A vacuolar antiporter is differentially regulated in leaves and roots of the halophytic wild rice Porteresia coarctata (Roxb.) Tateoka.
    Kizhakkedath P; Jegadeeson V; Venkataraman G; Parida A
    Mol Biol Rep; 2015 Jun; 42(6):1091-105. PubMed ID: 25481774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analyses of a putative plasma membrane Na+/H+ antiporter gene isolated from salt tolerant Helianthus tuberosus.
    Li Q; Tang Z; Hu Y; Yu L; Liu Z; Xu G
    Mol Biol Rep; 2014 Aug; 41(8):5097-108. PubMed ID: 24771143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently.
    Golldack D; Quigley F; Michalowski CB; Kamasani UR; Bohnert HJ
    Plant Mol Biol; 2003 Jan; 51(1):71-81. PubMed ID: 12602892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative transcriptome analysis of gene responses of salt-tolerant and salt-sensitive rice cultivars to salt stress.
    Fang X; Mo J; Zhou H; Shen X; Xie Y; Xu J; Yang S
    Sci Rep; 2023 Nov; 13(1):19065. PubMed ID: 37925528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional genomic analysis of K
    Haque US; Elias SM; Jahan I; Seraj ZI
    Front Plant Sci; 2022; 13():1089109. PubMed ID: 36743539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Futile Na+ cycling at the root plasma membrane in rice (Oryza sativa L.): kinetics, energetics, and relationship to salinity tolerance.
    Malagoli P; Britto DT; Schulze LM; Kronzucker HJ
    J Exp Bot; 2008; 59(15):4109-17. PubMed ID: 18854575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An abscisic-acid- and salt-stress-responsive rice cDNA from a novel plant gene family.
    Moons A; Gielen J; Vandekerckhove J; Van der Straeten D; Gheysen G; Van Montagu M
    Planta; 1997; 202(4):443-54. PubMed ID: 9265787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and molecular characterisations of salt tolerance components in rice varieties tolerant and sensitive to NaCl: the relevance of Na
    Gupta A; Shaw BP
    Funct Plant Biol; 2020 Dec; 48(1):72-87. PubMed ID: 32727653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a HKT-type transporter in rice as a general alkali cation transporter.
    Golldack D; Su H; Quigley F; Kamasani UR; Muñoz-Garay C; Balderas E; Popova OV; Bennett J; Bohnert HJ; Pantoja O
    Plant J; 2002 Aug; 31(4):529-42. PubMed ID: 12182709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.).
    Krishnamurthy P; Ranathunge K; Franke R; Prakash HS; Schreiber L; Mathew MK
    Planta; 2009 Jun; 230(1):119-34. PubMed ID: 19363620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa.
    Horie T; Yoshida K; Nakayama H; Yamada K; Oiki S; Shinmyo A
    Plant J; 2001 Jul; 27(2):129-38. PubMed ID: 11489190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.