BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 24482445)

  • 21. Mechanisms for activating bacterial RNA polymerase.
    Ghosh T; Bose D; Zhang X
    FEMS Microbiol Rev; 2010 Sep; 34(5):611-27. PubMed ID: 20629756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promoter-specific transcription inhibition in Staphylococcus aureus by a phage protein.
    Osmundson J; Montero-Diez C; Westblade LF; Hochschild A; Darst SA
    Cell; 2012 Nov; 151(5):1005-16. PubMed ID: 23178120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacillus subtilis δ Factor Functions as a Transcriptional Regulator by Facilitating the Open Complex Formation.
    Prajapati RK; Sengupta S; Rudra P; Mukhopadhyay J
    J Biol Chem; 2016 Jan; 291(3):1064-75. PubMed ID: 26546673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis for transcription activation by Crl through tethering of σ
    Cartagena AJ; Banta AB; Sathyan N; Ross W; Gourse RL; Campbell EA; Darst SA
    Proc Natl Acad Sci U S A; 2019 Sep; 116(38):18923-18927. PubMed ID: 31484766
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of regions within the bacteriophage T4 AsiA protein involved in its binding to the sigma70 subunit of E. coli RNA polymerase and its role as a transcriptional inhibitor and co-activator.
    Pal D; Vuthoori M; Pande S; Wheeler D; Hinton DM
    J Mol Biol; 2003 Jan; 325(5):827-41. PubMed ID: 12527294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disassociation of sigma subunit from RNA polymerase of Xanthomonas oryzae pv. oryzae by phage Xp10 infection.
    Lin SH; Liu JS; Yang BC; Kuo TT
    FEMS Microbiol Lett; 1998 May; 162(1):9-15. PubMed ID: 9595658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex.
    Mekler V; Minakhin L; Borukhov S; Mustaev A; Severinov K
    J Mol Biol; 2014 Dec; 426(24):3973-3984. PubMed ID: 25311862
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The tale of two RNA polymerases: transcription profiling and gene expression strategy of bacteriophage Xp10.
    Semenova E; Djordjevic M; Shraiman B; Severinov K
    Mol Microbiol; 2005 Feb; 55(3):764-77. PubMed ID: 15661002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of the bacteriophage PhiKZ non-virion RNA polymerase.
    deYMartín Garrido N; Orekhova M; Lai Wan Loong YTE; Litvinova A; Ramlaul K; Artamonova T; Melnikov AS; Serdobintsev P; Aylett CHS; Yakunina M
    Nucleic Acids Res; 2021 Jul; 49(13):7732-7739. PubMed ID: 34181731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacteriophage T4 MotA activator and the β-flap tip of RNA polymerase target the same set of σ70 carboxyl-terminal residues.
    Bonocora RP; Decker PK; Glass S; Knipling L; Hinton DM
    J Biol Chem; 2011 Nov; 286(45):39290-6. PubMed ID: 21911499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reorganisation of an RNA polymerase-promoter DNA complex for DNA melting.
    Burrows PC; Severinov K; Buck M; Wigneshweraraj SR
    EMBO J; 2004 Oct; 23(21):4253-63. PubMed ID: 15470504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The study of the phiKZ phage non-canonical non-virion RNA polymerase.
    Orekhova M; Koreshova A; Artamonova T; Khodorkovskii M; Yakunina M
    Biochem Biophys Res Commun; 2019 Apr; 511(4):759-764. PubMed ID: 30833081
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The sigma(70) subunit of RNA polymerase is contacted by the (lambda)Q antiterminator during early elongation.
    Nickels BE; Roberts CW; Sun H; Roberts JW; Hochschild A
    Mol Cell; 2002 Sep; 10(3):611-22. PubMed ID: 12408828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping the molecular interface between the sigma(70) subunit of E. coli RNA polymerase and T4 AsiA.
    Minakhin L; Camarero JA; Holford M; Parker C; Muir TW; Severinov K
    J Mol Biol; 2001 Mar; 306(4):631-42. PubMed ID: 11243776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA extension drives a stepwise displacement of an initiation-factor structural module in initial transcription.
    Li L; Molodtsov V; Lin W; Ebright RH; Zhang Y
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5801-5809. PubMed ID: 32127479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Amino Acid Substitution in RNA Polymerase That Inhibits the Utilization of an Alternative Sigma Factor.
    Wang Erickson AF; Deighan P; Garcia CP; Weinzierl ROJ; Hochschild A; Losick R
    J Bacteriol; 2017 Jul; 199(14):. PubMed ID: 28507241
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The bacteriophage lambda Q antiterminator protein contacts the beta-flap domain of RNA polymerase.
    Deighan P; Diez CM; Leibman M; Hochschild A; Nickels BE
    Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15305-10. PubMed ID: 18832144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cryo-EM structure of
    Narayanan A; Vago FS; Li K; Qayyum MZ; Yernool D; Jiang W; Murakami KS
    J Biol Chem; 2018 May; 293(19):7367-7375. PubMed ID: 29581236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of σ70 domain 1.1.
    Bae B; Davis E; Brown D; Campbell EA; Wigneshweraraj S; Darst SA
    Proc Natl Acad Sci U S A; 2013 Dec; 110(49):19772-7. PubMed ID: 24218560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and mechanistic basis for the inhibition of Escherichia coli RNA polymerase by T7 Gp2.
    James E; Liu M; Sheppard C; Mekler V; Cámara B; Liu B; Simpson P; Cota E; Severinov K; Matthews S; Wigneshweraraj S
    Mol Cell; 2012 Sep; 47(5):755-66. PubMed ID: 22819324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.