BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 24482793)

  • 1. An antibody-free microfluidic paper-based analytical device for the determination of tear fluid lactoferrin by fluorescence sensitization of Tb3+.
    Yamada K; Takaki S; Komuro N; Suzuki K; Citterio D
    Analyst; 2014 Apr; 139(7):1637-43. PubMed ID: 24482793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distance-Based Tear Lactoferrin Assay on Microfluidic Paper Device Using Interfacial Interactions on Surface-Modified Cellulose.
    Yamada K; Henares TG; Suzuki K; Citterio D
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24864-75. PubMed ID: 26488371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel and innovative paper-based analytical device for assessing tear lactoferrin of dry eye patients.
    Sonobe H; Ogawa Y; Yamada K; Shimizu E; Uchino Y; Kamoi M; Saijo Y; Yamane M; Citterio D; Suzuki K; Tsubota K
    Ocul Surf; 2019 Jan; 17(1):160-166. PubMed ID: 30399438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absolute quantification of human tear lactoferrin using multiple reaction monitoring technique with stable-isotopic labeling.
    You J; Willcox M; Fitzgerald A; Schiller B; Cozzi PJ; Russell PJ; Walsh BJ; Wasinger VC; Graham PH; Li Y
    Anal Biochem; 2016 Mar; 496():30-4. PubMed ID: 26717899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human tear protein analysis enabled by an alkaline microfluidic homogeneous immunoassay.
    Karns K; Herr AE
    Anal Chem; 2011 Nov; 83(21):8115-22. PubMed ID: 21910436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paper-based microfluidic system for tear electrolyte analysis.
    Yetisen AK; Jiang N; Tamayol A; Ruiz-Esparza GU; Zhang YS; Medina-Pando S; Gupta A; Wolffsohn JS; Butt H; Khademhosseini A; Yun SH
    Lab Chip; 2017 Mar; 17(6):1137-1148. PubMed ID: 28207920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative biomarker assay with microfluidic paper-based analytical devices.
    Li X; Tian J; Shen W
    Anal Bioanal Chem; 2010 Jan; 396(1):495-501. PubMed ID: 19838826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paper-based microfluidic device with upconversion fluorescence assay.
    He M; Liu Z
    Anal Chem; 2013 Dec; 85(24):11691-4. PubMed ID: 24308347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a paper-based microfluidic analytical device by a more facile hydrophobic substrate generation strategy.
    Xue YY; Zhang WT; Zhang MY; Liu LZ; Zhu WX; Yan LZ; Wang J; Wang YR; Wang JL; Zhang DH
    Anal Biochem; 2017 May; 525():100-106. PubMed ID: 28263739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood separation on microfluidic paper-based analytical devices.
    Songjaroen T; Dungchai W; Chailapakul O; Henry CS; Laiwattanapaisal W
    Lab Chip; 2012 Sep; 12(18):3392-8. PubMed ID: 22782449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic protein immobilization using charged polyacrylamide gels and cationic detergent microfluidic Western blotting.
    Kim D; Karns K; Tia SQ; He M; Herr AE
    Anal Chem; 2012 Mar; 84(5):2533-40. PubMed ID: 22304398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing.
    Ge L; Yan J; Song X; Yan M; Ge S; Yu J
    Biomaterials; 2012 Feb; 33(4):1024-31. PubMed ID: 22074665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic immunoassay for rapid detection of cotinine in saliva.
    Cheng K; Zhao W; Liu S; Sui G
    Biomed Microdevices; 2013 Dec; 15(6):949-57. PubMed ID: 23832621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method development for quantification of five tear proteins using selected reaction monitoring (SRM) mass spectrometry.
    Masoudi S; Zhong L; Raftery MJ; Stapleton FJ; Willcox MD
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):767-75. PubMed ID: 24408985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a microfluidic paper-based analytical device for the determination of salivary aldehydes.
    Ramdzan AN; Almeida MIGS; McCullough MJ; Kolev SD
    Anal Chim Acta; 2016 May; 919():47-54. PubMed ID: 27086098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical detection of high-sensitivity CRP inside a microfluidic device by numerical and experimental studies.
    Lee G; Park I; Kwon K; Kwon T; Seo J; Chang WJ; Nam H; Cha GS; Choi MH; Yoon DS; Lee SW
    Biomed Microdevices; 2012 Apr; 14(2):375-84. PubMed ID: 22143877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tear analysis and lens-tear interactions. Part I. Protein fingerprinting with microfluidic technology.
    Mann AM; Tighe BJ
    Cont Lens Anterior Eye; 2007 Jul; 30(3):163-73. PubMed ID: 17499010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid assay of lactoferrin in keratoconjunctivitis sicca.
    McCollum CJ; Foulks GN; Bodner B; Shepard J; Daniels K; Gross V; Kelly L; Cavanagh HD
    Cornea; 1994 Nov; 13(6):505-8. PubMed ID: 7842709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screen-printed microfluidic device for electrochemical immunoassay.
    Dong H; Li CM; Zhang YF; Cao XD; Gan Y
    Lab Chip; 2007 Dec; 7(12):1752-8. PubMed ID: 18030397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Microfluidic Paper-Based Origami Nanobiosensor for Label-Free, Ultrasensitive Immunoassays.
    Li X; Liu X
    Adv Healthc Mater; 2016 Jun; 5(11):1326-35. PubMed ID: 27122227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.