These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 24483341)

  • 1. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.
    Li B; Gao X; Li J; Yuan C
    Environ Sci Technol; 2014; 48(5):3047-55. PubMed ID: 24483341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material.
    Ren JG; Wang C; Wu QH; Liu X; Yang Y; He L; Zhang W
    Nanoscale; 2014 Mar; 6(6):3353-60. PubMed ID: 24522297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries.
    Yang Y; Ren JG; Wang X; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Sep; 5(18):8689-94. PubMed ID: 23900559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of Li-ion batteries to the environmental impact of electric vehicles.
    Notter DA; Gauch M; Widmer R; Wäger P; Stamp A; Zah R; Althaus HJ
    Environ Sci Technol; 2010 Sep; 44(17):6550-6. PubMed ID: 20695466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries.
    Cui LF; Yang Y; Hsu CM; Cui Y
    Nano Lett; 2009 Sep; 9(9):3370-4. PubMed ID: 19655765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicon nanowire fabric as a lithium ion battery electrode material.
    Chockla AM; Harris JT; Akhavan VA; Bogart TD; Holmberg VC; Steinhagen C; Mullins CB; Stevenson KJ; Korgel BA
    J Am Chem Soc; 2011 Dec; 133(51):20914-21. PubMed ID: 22070459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An interwoven network of MnO₂ nanowires and carbon nanotubes as the anode for bendable lithium-ion batteries.
    Ee SJ; Pang H; Mani U; Yan Q; Ting SL; Chen P
    Chemphyschem; 2014 Aug; 15(12):2445-9. PubMed ID: 24888436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment.
    Wang Y; Yu Y; Huang K; Chen B; Deng W; Yao Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1251-1260. PubMed ID: 27770328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Materials for rechargeable lithium-ion batteries.
    Hayner CM; Zhao X; Kung HH
    Annu Rev Chem Biomol Eng; 2012; 3():445-71. PubMed ID: 22524506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance lithium battery anodes using silicon nanowires.
    Chan CK; Peng H; Liu G; McIlwrath K; Zhang XF; Huggins RA; Cui Y
    Nat Nanotechnol; 2008 Jan; 3(1):31-5. PubMed ID: 18654447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale synthesis of interconnected Si/SiOx nanowire anodes for rechargeable lithium-ion batteries.
    Yoo S; Lee JI; Shin M; Park S
    ChemSusChem; 2013 Jul; 6(7):1153-7. PubMed ID: 23765592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer-free Vertical Transfer of Silicon Nanowires and their Application to Energy Storage.
    Kim HJ; Lee J; Lee SE; Kim W; Kim HJ; Choi DG; Park JH
    ChemSusChem; 2013 Nov; 6(11):2144-8. PubMed ID: 24039099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery.
    Nirmale TC; Kale BB; Varma AJ
    Int J Biol Macromol; 2017 Oct; 103():1032-1043. PubMed ID: 28554795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of modified graphene for energy storage applications.
    Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured silicon anodes for lithium ion rechargeable batteries.
    Teki R; Datta MK; Krishnan R; Parker TC; Lu TM; Kumta PN; Koratkar N
    Small; 2009 Oct; 5(20):2236-42. PubMed ID: 19739146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable fabrication of silicon nanotubes and their application to energy storage.
    Yoo JK; Kim J; Jung YS; Kang K
    Adv Mater; 2012 Oct; 24(40):5452-6. PubMed ID: 22865826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries.
    Xia X; Li P
    Sci Total Environ; 2022 Mar; 814():152870. PubMed ID: 34990672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-dimensional/two-dimensional hybridization for self-supported binder-free silicon-based lithium ion battery anodes.
    Wang B; Li X; Luo B; Jia Y; Zhi L
    Nanoscale; 2013 Feb; 5(4):1470-4. PubMed ID: 23334474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes.
    Hu L; Wu H; Hong SS; Cui L; McDonough JR; Bohy S; Cui Y
    Chem Commun (Camb); 2011 Jan; 47(1):367-9. PubMed ID: 20830432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rationally designed composite of alternating strata of Si nanoparticles and graphene: a high-performance lithium-ion battery anode.
    Sun F; Huang K; Qi X; Gao T; Liu Y; Zou X; Wei X; Zhong J
    Nanoscale; 2013 Sep; 5(18):8586-92. PubMed ID: 23893258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.