BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24483344)

  • 1. Turning gold into "diamond": a family of hexagonal diamond-type Au-frameworks interconnected by triangular clusters in the Sr-Al-Au system.
    Palasyuk A; Grin Y; Miller GJ
    J Am Chem Soc; 2014 Feb; 136(8):3108-17. PubMed ID: 24483344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure and bonding in BaAu5Ga2 and AeAu4+xGa3-x (Ae = Ba and Eu): hexagonal diamond-type Au frameworks and remarkable cation/anion partitioning in the Ae-Au-Ga systems.
    Smetana V; Steinberg S; Card N; Mudring AV; Miller GJ
    Inorg Chem; 2015 Feb; 54(3):1010-8. PubMed ID: 25494103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold network structures in rhombohedral and monoclinic Sr2Au6(Au,T)3 (T = Zn, Ga). A transition via relaxation.
    Mishra T; Lin Q; Corbett JD
    Inorg Chem; 2013 Dec; 52(23):13623-30. PubMed ID: 24215108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hexagonal-diamond-like gold lattices, Ba and (Au,T)3 interstitials, and delocalized bonding in a family of intermetallic phases Ba2Au6(Au,T)3 (T = Zn, Cd, Ga, In, or Sn).
    Lin Q; Mishra T; Corbett JD
    J Am Chem Soc; 2013 Jul; 135(30):11023-31. PubMed ID: 23805996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SrAu4In4 and Sr4Au9In13: polar intermetallic structures with cations in augmented hexagonal prismatic environments.
    Palasyuk A; Dai JC; Corbett JD
    Inorg Chem; 2008 Apr; 47(8):3128-34. PubMed ID: 18330980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three alkali-metal-gold-gallium systems. Ternary tunnel structures and some problems with poorly ordered cations.
    Smetana V; Miller GJ; Corbett JD
    Inorg Chem; 2012 Jul; 51(14):7711-21. PubMed ID: 22738130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold tetrahedra as building blocks in K3Au5Tr (Tr = In, Tl) and Rb2Au3Tl and in other compounds: a broad group of electron-poor intermetallic phases.
    Li B; Kim SJ; Miller GJ; Corbett JD
    Inorg Chem; 2009 Jul; 48(14):6573-83. PubMed ID: 20507109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyclusters and substitution effects in the Na-Au-Ga system: remarkable sodium bonding characteristics in polar intermetallics.
    Smetana V; Miller GJ; Corbett JD
    Inorg Chem; 2013 Nov; 52(21):12502-10. PubMed ID: 24138102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel condensation of Au-centered trigonal prisms in rare-earth-metal-rich tellurides: Er7Au2Te2 and Lu7Au2Te2.
    Gupta S; Corbett JD
    Dalton Trans; 2010 Jul; 39(26):6074-9. PubMed ID: 20464015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of AeIn4 Indides (Ae=Ba, Sr) into an AeAu2In2 structure type through gold substitution.
    Dai JC; Corbett JD
    Inorg Chem; 2007 May; 46(11):4592-8. PubMed ID: 17439116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Four polyanionic compounds in the K–Au–Ga system: a case study in exploratory synthesis and of the art of structural analysis.
    Smetana V; Corbett JD; Miller GJ
    Inorg Chem; 2012 Feb; 51(3):1695-702. PubMed ID: 22260246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca4Au10In3: synthesis, structure, and bonding analysis. The chemical and electronic transformations from the isotypic Zr7Ni10 intermetallic.
    Lin Q; Corbett JD
    Inorg Chem; 2007 Oct; 46(21):8722-7. PubMed ID: 17880207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substitution of Au or Hg into BaTl2 and BaIn2. New ternary examples of smaller CeCu2-type intermetallic phases.
    Dai JC; Corbett JD
    Inorg Chem; 2006 Mar; 45(5):2104-11. PubMed ID: 16499373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ruthenium intermetallics grown from La-Ni flux: synthesis, structure, and physical properties.
    Zaikina JV; Jo YJ; Latturner SE
    Inorg Chem; 2010 Mar; 49(6):2773-81. PubMed ID: 20141115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, structure, and bonding in K12Au21Sn4. A polar intermetallic compound with dense Au20 and open AuSn4 layers.
    Li B; Kim SJ; Miller GJ; Corbett JD
    Inorg Chem; 2009 Dec; 48(23):11108-13. PubMed ID: 19874038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploratory syntheses and structures of SrAu(4.3)In(1.7) and CaAg(3.5)In(1.9): electron-poor intermetallics with diversified polyanionic frameworks that are derived from the CaAu4In2 approximant.
    Lin Q; Corbett JD
    Inorg Chem; 2011 Nov; 50(21):11091-8. PubMed ID: 21988330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BaAu(x)Zn(13-x): electron-poor cubic NaZn13-type intermetallic and its ordered tetragonal variant.
    Gupta S; Corbett JD
    Inorg Chem; 2012 Feb; 51(4):2247-53. PubMed ID: 22313380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disorder-order structural transformation in electron-poor Sr3Au8Sn3 driven by chemical bonding optimization.
    Lin Q; Vetter J; Corbett JD
    Inorg Chem; 2013 Jun; 52(11):6603-9. PubMed ID: 23679918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, crystal structure, and properties of two modifications of MgB(12)C(2).
    Adasch V; Hess KU; Ludwig T; Vojteer N; Hillebrecht H
    Chemistry; 2007; 13(12):3450-8. PubMed ID: 17236227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K(23)Au(12)Sn(9)--an intermetallic compound containing a large gold-tin cluster: synthesis, structure, and bonding.
    Li B; Kim SJ; Miller GJ; Corbett JD
    Inorg Chem; 2010 Feb; 49(4):1503-9. PubMed ID: 20063860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.