These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 2448338)

  • 1. Golgi stain identifies three types of fibres in fish muscle.
    Franzini-Armstrong C; Gilly WF; Aladjem E; Appelt D
    J Muscle Res Cell Motil; 1987 Oct; 8(5):418-27. PubMed ID: 2448338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils.
    Flucher BE; Takekura H; Franzini-Armstrong C
    Dev Biol; 1993 Nov; 160(1):135-47. PubMed ID: 8224530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ultrastructural study of the segmental uptake of horseradish peroxidase in the endplate region of denervated skeletal muscle fibres.
    Tågerud S; Libelius R; Thesleff S
    J Neurol Sci; 1986 Sep; 75(2):141-57. PubMed ID: 2428942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural organization of the transverse tubules and the sarcoplasmic reticulum in a fish sound-producing muscle.
    Suzuki S; Nagayoshi H; Ishino K; Hino N; Sugi H
    J Electron Microsc (Tokyo); 2003; 52(3):337-47. PubMed ID: 12892224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination between fast- and slow-twitch fibres of guinea pig skeletal muscle using the relative surface density of junctional transverse tubule membrane.
    Franzini-Armstrong C; Ferguson DG; Champ C
    J Muscle Res Cell Motil; 1988 Oct; 9(5):403-14. PubMed ID: 3215995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the excitation-contraction coupling apparatus in skeletal muscle: peripheral and internal calcium release units are formed sequentially.
    Takekura H; Sun X; Franzini-Armstrong C
    J Muscle Res Cell Motil; 1994 Apr; 15(2):102-18. PubMed ID: 8051285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape and disposition of clefts, tubules, and sarcoplasmic reticulum in long and short sarcomere fibers of crab and crayfish.
    Franzini-Armstrong C; Eastwood AB; Peachey LD
    Cell Tissue Res; 1986; 244(1):9-19. PubMed ID: 3698089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of the fine structures of frog slow and twitch muscle fibers.
    Page SG
    J Cell Biol; 1965 Aug; 26(2):477-97. PubMed ID: 5893686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Fiber-type morphology and function of the triads in frog (Rana esculenta) skeletal muscle)].
    Dauber W
    Z Mikrosk Anat Forsch; 1979; 93(3):512-36. PubMed ID: 316237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of the transverse tubular system of the rat extensor digitorum longus and soleus muscles.
    Cullen MJ; Hollingworth S; Marshall MW
    J Anat; 1984 Mar; 138 ( Pt 2)(Pt 2):297-308. PubMed ID: 6715252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.
    Trinh HH; Lamb GD
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):591-600. PubMed ID: 16789925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of membrane systems during development of slow and fast skeletal muscle fibres in chicken.
    Takekura H; Shuman H; Franzini-Armstrong C
    J Muscle Res Cell Motil; 1993 Dec; 14(6):633-45. PubMed ID: 8126223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional architecture of sarcoplasmic reticulum and T-system in human skeletal muscle.
    Hayashi K; Miller RG; Brownell KW
    Anat Rec; 1987 Jul; 218(3):275-83. PubMed ID: 2443041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordinated development of myofibrils, sarcoplasmic reticulum and transverse tubules in normal and dysgenic mouse skeletal muscle, in vivo and in vitro.
    Flucher BE; Phillips JL; Powell JA; Andrews SB; Daniels MP
    Dev Biol; 1992 Apr; 150(2):266-80. PubMed ID: 1551475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of age on calcium transport activity of sarcoplasmic reticulum in fast- and slow-twitch rat muscle fibres.
    Larsson L; Salviati G
    J Physiol; 1989 Dec; 419():253-64. PubMed ID: 2621631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of fiber types in the pigeon's metapatagialis muscle. II. Effects of denervation.
    Hikida RS; Bock WJ
    Tissue Cell; 1976; 8(2):259-76. PubMed ID: 941134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity of the transverse tubules following denervation and subsequent reinnervation in rat slow and fast muscle fibres.
    Takekura H; Tamaki H; Nishizawa T; Kasuga N
    J Muscle Res Cell Motil; 2003; 24(7):439-51. PubMed ID: 14677647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transverse tubular system of cat intrafusal muscle fibres.
    Adal MN
    Cell Tissue Res; 1986; 244(1):197-202. PubMed ID: 2421914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T-tubule profiles in Purkinje fibres of mammalian myocardium.
    Di Maio A; Ter Keurs HE; Franzini-Armstrong C
    J Muscle Res Cell Motil; 2007; 28(2-3):115-21. PubMed ID: 17572852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural changes in human muscle fibres in disease.
    Papadimitriou JM; Mastaglia FL
    J Submicrosc Cytol; 1982 Jul; 14(3):525-51. PubMed ID: 6757457
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.