These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 24483390)
1. Persistence of Brownian motion in a shear flow. Takikawa Y; Orihara H Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062111. PubMed ID: 24483390 [TBL] [Abstract][Full Text] [Related]
2. Persistence of a Rouse polymer chain under transverse shear flow. Bhattacharya S; Das D; Majumdar SN Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061122. PubMed ID: 17677235 [TBL] [Abstract][Full Text] [Related]
3. Brownian motion in shear flow: direct observation of anomalous diffusion. Orihara H; Takikawa Y Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061120. PubMed ID: 22304053 [TBL] [Abstract][Full Text] [Related]
4. Persistence of a Brownian particle in a time-dependent potential. Chakraborty D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051101. PubMed ID: 23004697 [TBL] [Abstract][Full Text] [Related]
5. Cage effect for the velocity correlation functions of a Brownian particle in viscoelastic shear flows. Mankin R; Laas K; Lumi N; Rekker A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042127. PubMed ID: 25375458 [TBL] [Abstract][Full Text] [Related]
6. Persistence of a particle in the Matheron-de Marsily velocity field. Majumdar SN Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 1):050101. PubMed ID: 14682777 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of a trapped Brownian particle in shear flows. Holzer L; Bammert J; Rzehak R; Zimmermann W Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041124. PubMed ID: 20481694 [TBL] [Abstract][Full Text] [Related]
8. Memory effects for a trapped Brownian particle in viscoelastic shear flows. Mankin R; Laas K; Lumi N Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042142. PubMed ID: 24229150 [TBL] [Abstract][Full Text] [Related]
9. Motion of a random walker in a quenched power law correlated velocity field. Roy S; Das D Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026106. PubMed ID: 16605397 [TBL] [Abstract][Full Text] [Related]
10. Fraction of uninfected walkers in the one-dimensional Potts model. O'Donoghue SJ; Bray AJ Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051114. PubMed ID: 12059536 [TBL] [Abstract][Full Text] [Related]
11. Brownian motion of finite-inertia particles in a simple shear flow. Drossinos Y; Reeks MW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031113. PubMed ID: 15903412 [TBL] [Abstract][Full Text] [Related]
12. Fractional Brownian motion of worms in worm algorithms for frustrated Ising magnets. Rakala G; Damle K; Dhar D Phys Rev E; 2021 Jun; 103(6-1):062101. PubMed ID: 34271608 [TBL] [Abstract][Full Text] [Related]
13. Brownian dynamics of a self-propelled particle in shear flow. ten Hagen B; Wittkowski R; Löwen H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031105. PubMed ID: 22060326 [TBL] [Abstract][Full Text] [Related]
14. Harmonically bound Brownian motion in fluids under shear: Fokker-Planck and generalized Langevin descriptions. Híjar H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022139. PubMed ID: 25768490 [TBL] [Abstract][Full Text] [Related]
15. Brownian motion in time-dependent logarithmic potential: Exact results for dynamics and first-passage properties. Ryabov A; Berestneva E; Holubec V J Chem Phys; 2015 Sep; 143(11):114117. PubMed ID: 26395697 [TBL] [Abstract][Full Text] [Related]
16. Fractional Brownian motion approach to polymer translocation: the governing equation of motion. Dubbeldam JL; Rostiashvili VG; Milchev A; Vilgis TA Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011802. PubMed ID: 21405705 [TBL] [Abstract][Full Text] [Related]
17. Quantifying the degree of persistence in random amoeboid motion based on the Hurst exponent of fractional Brownian motion. Makarava N; Menz S; Theves M; Huisinga W; Beta C; Holschneider M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042703. PubMed ID: 25375519 [TBL] [Abstract][Full Text] [Related]
18. Tumbling motion of a single chain in shear flow: a crossover from Brownian to non-Brownian behavior. Kobayashi H; Yamamoto R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041807. PubMed ID: 20481744 [TBL] [Abstract][Full Text] [Related]
19. Direct measurement of shear-induced cross-correlations of Brownian motion. Ziehl A; Bammert J; Holzer L; Wagner C; Zimmermann W Phys Rev Lett; 2009 Dec; 103(23):230602. PubMed ID: 20366137 [TBL] [Abstract][Full Text] [Related]
20. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion. Cushman JH; O'Malley D; Park M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):032101. PubMed ID: 19391995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]