These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
546 related articles for article (PubMed ID: 24483403)
1. Transient aging in fractional Brownian and Langevin-equation motion. Kursawe J; Schulz J; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062124. PubMed ID: 24483403 [TBL] [Abstract][Full Text] [Related]
2. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. Jeon JH; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021103. PubMed ID: 20365526 [TBL] [Abstract][Full Text] [Related]
3. Inequivalence of time and ensemble averages in ergodic systems: exponential versus power-law relaxation in confinement. Jeon JH; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021147. PubMed ID: 22463192 [TBL] [Abstract][Full Text] [Related]
7. Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion. Jeon JH; Chechkin AV; Metzler R Phys Chem Chem Phys; 2014 Aug; 16(30):15811-7. PubMed ID: 24968336 [TBL] [Abstract][Full Text] [Related]
8. Aging and confinement in subordinated fractional Brownian motion. Liang Y; Wang W; Metzler R Phys Rev E; 2024 Jun; 109(6-1):064144. PubMed ID: 39020934 [TBL] [Abstract][Full Text] [Related]
9. Time averages and their statistical variation for the Ornstein-Uhlenbeck process: Role of initial particle distributions and relaxation to stationarity. Cherstvy AG; Thapa S; Mardoukhi Y; Chechkin AV; Metzler R Phys Rev E; 2018 Aug; 98(2-1):022134. PubMed ID: 30253569 [TBL] [Abstract][Full Text] [Related]
10. Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. Burov S; Jeon JH; Metzler R; Barkai E Phys Chem Chem Phys; 2011 Feb; 13(5):1800-12. PubMed ID: 21203639 [TBL] [Abstract][Full Text] [Related]
11. Ergodic properties of fractional Brownian-Langevin motion. Deng W; Barkai E Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011112. PubMed ID: 19257006 [TBL] [Abstract][Full Text] [Related]
12. Fractional Langevin equation. Lutz E Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051106. PubMed ID: 11735899 [TBL] [Abstract][Full Text] [Related]
13. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models. Wang W; Metzler R; Cherstvy AG Phys Chem Chem Phys; 2022 Aug; 24(31):18482-18504. PubMed ID: 35838015 [TBL] [Abstract][Full Text] [Related]
14. Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity. Cherstvy AG; Chechkin AV; Metzler R Soft Matter; 2014 Mar; 10(10):1591-601. PubMed ID: 24652104 [TBL] [Abstract][Full Text] [Related]
15. Brownian motion of a self-propelled particle. ten Hagen B; van Teeffelen S; Löwen H J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563 [TBL] [Abstract][Full Text] [Related]
16. Inertia triggers nonergodicity of fractional Brownian motion. Cherstvy AG; Wang W; Metzler R; Sokolov IM Phys Rev E; 2021 Aug; 104(2-1):024115. PubMed ID: 34525594 [TBL] [Abstract][Full Text] [Related]
17. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion. Cushman JH; O'Malley D; Park M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):032101. PubMed ID: 19391995 [TBL] [Abstract][Full Text] [Related]
18. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Metzler R; Jeon JH; Cherstvy AG; Barkai E Phys Chem Chem Phys; 2014 Nov; 16(44):24128-64. PubMed ID: 25297814 [TBL] [Abstract][Full Text] [Related]
19. Brownian motion of a charged particle driven internally by correlated noise. Paraan FN; Solon MP; Esguerra JP Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):022101. PubMed ID: 18352065 [TBL] [Abstract][Full Text] [Related]
20. On the non-stationary generalized Langevin equation. Meyer H; Voigtmann T; Schilling T J Chem Phys; 2017 Dec; 147(21):214110. PubMed ID: 29221405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]