These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24483470)

  • 1. Feedback control of flow alignment in sheared liquid crystals.
    Strehober DA; Schöll E; Klapp SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062509. PubMed ID: 24483470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear-stress-controlled dynamics of nematic complex fluids.
    Klapp SH; Hess S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051711. PubMed ID: 20866251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oscillatory motion of sheared nanorods beyond the nematic phase.
    Strehober DA; Engel H; Klapp SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012505. PubMed ID: 23944472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical heterogeneity in a highly supercooled liquid under a sheared situation.
    Mizuno H; Yamamoto R
    J Chem Phys; 2012 Feb; 136(8):084505. PubMed ID: 22380051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulating shear-induced non-equilibrium transitions in colloidal films by feedback control.
    Vezirov TA; Gerloff S; Klapp SH
    Soft Matter; 2015 Jan; 11(2):406-13. PubMed ID: 25407811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow alignment phenomena in liquid crystals studied by molecular dynamics simulation.
    Sarman S; Laaksonen A
    J Chem Phys; 2009 Oct; 131(14):144904. PubMed ID: 19831466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical investigation of liquid crystal colloids using a continuum description.
    Fukuda J; Yoneya M; Yokoyama H; Stark H
    Colloids Surf B Biointerfaces; 2004 Nov; 38(3-4):143-7. PubMed ID: 15542316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear banding in nematogenic fluids with oscillating orientational dynamics.
    Lugo-Frias R; Reinken H; Klapp SH
    Eur Phys J E Soft Matter; 2016 Sep; 39(9):88. PubMed ID: 27670275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twist viscosities and flow alignment of biaxial nematic liquid crystal phases of a soft ellipsoid-string fluid studied by molecular dynamics simulation.
    Sarman S; Laaksonen A
    Phys Chem Chem Phys; 2012 Sep; 14(34):11999-2013. PubMed ID: 22847339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice Boltzmann algorithm to simulate isotropic-nematic emulsions.
    Sulaiman N; Marenduzzo D; Yeomans JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041708. PubMed ID: 17155079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluctuating dynamics of nematic liquid crystals using the stochastic method of lines.
    Bhattacharjee AK; Menon GI; Adhikari R
    J Chem Phys; 2010 Jul; 133(4):044112. PubMed ID: 20687638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of shear flow on the Fréedericksz transition in nematic liquid crystals.
    Makarov DV; Zakhlevnykh AN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041710. PubMed ID: 17155081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaotic orientational behavior of a nematic liquid crystal subjected to a steady shear flow.
    Rienäcker G; Kröger M; Hess S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 1):040702. PubMed ID: 12443167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A coupled map lattice model for rheological chaos in sheared nematic liquid crystals.
    Kamil SM; Menon GI; Sinha S
    Chaos; 2010 Dec; 20(4):043123. PubMed ID: 21198093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bulk and surface biaxiality in nematic liquid crystals.
    Biscari P; Napoli G; Turzi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031708. PubMed ID: 17025655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal dynamics in the onset of a Hagen-Poiseuille flow.
    Mortensen NA; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):017301. PubMed ID: 16907216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical properties of nematic liquid crystals subjected to shear flow and magnetic fields: tumbling instability and nonequilibrium fluctuations.
    Fatriansyah JF; Orihara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012510. PubMed ID: 23944477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vector formalism for active nematic liquid crystals in two dimensions.
    Pismen LM
    Phys Rev E; 2022 Sep; 106(3-1):034701. PubMed ID: 36266876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robustness of the periodic and chaotic orientational behavior of tumbling nematic liquid crystals.
    Heidenreich S; Ilg P; Hess S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061710. PubMed ID: 16906852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regular and chaotic states in a local map description of sheared nematic liquid crystals.
    Kamil SM; Sinha S; Menon GI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011706. PubMed ID: 18763972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.